
Discovering and Exploiting IoT Device Hidden Attributes:
A New Vulnerability in Smart Homes

Xuening Xu
Stevens Institute of Technology

Department of Electrical and Computer Engineering
Hoboken, NJ, United States

xxu64@stevens.edu

Chenglong Fu
The University of North Carolina at Charlotte

Department of Software and Information Systems
Charlotte, NC, United States
chenglong.fu@charlotte.edu

Xiaojiang Du
Stevens Institute of Technology

Department of Electrical and Computer Engineering
Hoboken, NJ, United States

xdu16@stevens.edu

Bo Luo
The University of Kansas

EECS/I2S
Lawrence, KS, United States

bluo@ku.edu

Abstract
With the growing popularity and pervasive adoption of smart home
Internet of Things (IoT) platforms, IoT security and privacy issues
are gaining more attention. In this work, we reveal a new vulnera-
bility inherent in most smart home IoT automation platforms and
systems but previously unnoticed by the security community: the
hidden attributes, i.e., attributes that are configurable by knowl-
edgeable attackers through IoT APIs to effectively change device
behaviors, but these attributes are not manageable or observable
by users. An IoT device with compromised hidden attributes may
behave differently from user expectations and cause severe secu-
rity and safety consequences (e.g., burglary or fire). We present
the root causes of the vulnerability and develop an approach to
systematically discover hidden attributes. We evaluate a total of
31 commodity IoT devices of various types from 16 manufactur-
ers and identify hidden attributes in all of them. Furthermore, we
select several IoT devices with security and safety-critical hidden
attributes and demonstrate the end-to-end hidden attribute attack
on two popular IoT platforms: Samsung SmartThings and Amazon
Alexa. In addition, we develop a tool that can automatically patch
edge drivers and fix the hidden attribute issue. The source code of
the auto-patching tool can be found at Anonymous GitHub.

CCS Concepts
• Security and privacy→ Systems security; • Computer sys-
tems organization → Embedded and cyber-physical systems.

Keywords
IoT, Security, Smart Home, Hidden Attribute

ACM Reference Format:
Xuening Xu, Chenglong Fu, Xiaojiang Du, and Bo Luo. 2025. Discovering
and Exploiting IoT Device Hidden Attributes: A New Vulnerability in Smart
Homes. In Proceedings of the 2025 ACM SIGSAC Conference on Computer

This work is licensed under a Creative Commons Attribution 4.0 International License.
CCS ’25, Taipei, Taiwan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1525-9/2025/10
https://doi.org/10.1145/3719027.3744847

Smart Lock Edge Dr iver IoT Platform

Attri 1: LockState
Attri 2: Battery
Attri 3: AutoRelockTime
Attri 4: SoundVolume

modify

Attri 1: LockState
Attri 2: Battery
Attri 3: AutoRelockTime
Attri 4: SoundVolume

missing

Figure 1: Mapping from device-supported attributes to avail-
able attributes on the IoT platform via edge drivers.

and Communications Security (CCS ’25), October 13–17, 2025, Taipei, Taiwan.
ACM,NewYork, NY, USA, 20 pages. https://doi.org/10.1145/3719027.3744847

1 Introduction
A typical smart home Internet of Things (IoT) automation platform
includes a cloud server, IoT hubs, and smartphone apps. To improve
interoperability with a wider range of devices, major platforms
like Samsung SmartThings and Amazon Alexa support third-party
devices with diverse functionalities. On these platforms, devices
from other vendors are known as third-party IoT devices. To ensure
a seamless user experience and simplify app development, each
platform provides predefined functions that specify the content and
format of messages exchanged between third-party devices and
the platform’s hubs and cloud. Integrating a device model into a
platform requires manufacturers to map the device’s functionalities
to those required by the platform, usually through middleware
known as an “edge driver” or “device driver”. This architecture
allows platforms to offload device adaptation to manufacturers,
simplifying the interface for users and apps by hiding intricate
low-level details of IoT devices.

While edge drivers enable access to IoT device functions, they
may not fully map advanced features. For instance, as shown in
Figure 1, a smart lock natively supports four attributes, but only two
of them are available on the IoT platform after the mapping via the
edge driver. An attacker can modify the two unmapped attributes
without being noticed by the IoT platform, as demonstrated in
Section 6.3. Since users and automation apps are decoupled from
the actual devices, they cannot access or view these configurable
attributes via any interfaces on the IoT platform. We refer to these

https://orcid.org/0009-0006-2072-3005
https://orcid.org/0000-0001-6555-9858
https://orcid.org/0000-0003-4235-9671
https://orcid.org/0000-0001-8196-2436
https://anonymous.4open.science/r/SmartThings-Edge-Driver-Auto-Patching-49CE/README.md
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3719027.3744847
https://doi.org/10.1145/3719027.3744847

CCS ’25, October 13–17, 2025, Taipei, Taiwan Xuening Xu, Chenglong Fu, Xiaojiang Du, and Bo Luo

non-observable attributes as the hidden attributes. Notably, many of
these hidden attributes can be configured through API access on a
local network, potentially exposing them to malicious attacks. The
inadequate coverage of edge drivers leads to inconsistent mappings,
making such exploits unnoticed by users. Continuing with the
example in Figure 1, if an attacker changes the “AutoRelockTime”
without the user’s knowledge, the door could remain unlocked for
an extended period, increasing the risk of burglary. The details are
provided in Section 6.3.

In this paper, we conduct a systematic study of the hidden at-
tributes on 31 commercial IoT devices with different features and
communication protocols. We detail the processes of discovering
and exploiting hidden attributes and present an automatic patching
approach as a countermeasure. Our contributions are summarized
below:
• We are the first to discover a new vulnerability – hidden at-
tributes – ubiquitous in IoT devices across various wireless
technologies. We reveal the root causes and develop an effec-
tive approach for discovering hidden attributes.

• We present a systematic study and exploration of hidden at-
tributes. We conduct experiments on 31 commercial IoT devices
(using Zigbee, Z-Wave, or Wi-Fi) from 16 manufacturers and
identify 119 hidden attributes.

• We introduce the hidden attribute attack, a new attack that
exploits the hidden attribute vulnerability. We implement it on
real IoT devices. Our experiments show that the attack can cause
serious safety and security issues, which we have responsibly
disclosed to the manufacturers.

• We design an approach to automatically patch edge drivers and
fix the hidden attribute vulnerability. We implement this as an
auto-patching tool on the Samsung SmartThings platform and
make it available to the public. The tool is easy to use for general
users and can effectively fix the hidden attribute problem.
The security impact of this work lies in the discovery of a previ-

ously unexplored vulnerability: hidden attributes that lack visibility
and auditing across smart home platforms. These attributes can
be stealthily manipulated by adversaries, making them especially
suitable for persistent, undetected attacks, such as establishing long-
term backdoors. By systematically exposing and demonstrating the
severe vulnerability, we demonstrate how attackers can exploit
them in real-world settings, while showing the urgent need for
strong defensive measures across the entire IoT ecosystem. Our
work belongs to proactive security research that is essential for
identifying potential vulnerabilities before they are exploited by
attackers, which not only sheds light on an undiscovered threat
but also provides insights for fortifying systems at multiple aspects,
including device manufacturers, IoT platform owners, end users,
driver developers, and protocol designers.
Ethical Considerations and Responsible Disclosure. The objec-
tive of this project is to investigate the security risks associated with
hidden attributes of IoT devices and to stimulate further attention
from both the research community and manufacturers, which can
benefit millions of smart home users. We conducted all experiments
in a lab environment with isolated networks and did not probe or
attack any device outside the lab. In February 2023, we disclosed

our findings of hidden attributes and the associated potential se-
curity risks to the Connectivity Standards Alliance (CSA) and the
manufacturers of all the tested devices. As of the submission of this
manuscript, we have received responses from CSA, Samsung, and
Amazon. They all confirmed the validity of the reported vulner-
abilities and acknowledged our findings (details in Appendix D).
CSA has notified its members to update existing devices that may
be impacted. Amazon awarded us a bounty of $2,500 for our
disclosure.We have not disclosed the hidden attribute attack to the
public. Among the contributions mentioned above, only the auto-
patching approach and tool rely on the artifacts, and we provide
the artifacts of the auto-patching tool in the Anonymous Github 1.
Note that our contributions in discovering and studying the hidden
attributes do not rely on any particular artifacts. The existence of
hidden attributes is a fact that we have uncovered and studied.

The rest of the paper is organized as follows: we introduce the
background in Section 2, followed by the system and threat models
in Section 3. We present the hidden attribute discovery approach in
Section 4, the details of the hidden attribute attack in Section 5, and
the attack experiments with real-world IoT devices in Section 6. In
Section 7, we introduce our auto-patching tool developed to miti-
gate the hidden attribute attack on the SmartThings platform. In
Section 8, we present the lessons learned from this work, highlight-
ing the root causes, systemic challenges, and strategic directions
for strengthening IoT security. We review the related works in
Section 9 and conclude the paper in Section 10.

2 Background
2.1 Smart Home IoT Architecture
In a typical smart home, there are IoT devices, IoT apps, and services
being used. They can be roughly classified into two categories: home
automation platforms and IoT devices.
Home Automation Platforms. A home automation platform
consists of an integrated suite of hardware, software, and cloud
services. For instance, the Samsung SmartThings platform encom-
passes smart home hubs, cloud servers, and mobile companion
apps. These platforms serve as control centers to integrate a di-
verse array of IoT devices from third-party manufacturers, offering
users versatile interfaces to control and manage their smart homes.
Additionally, they enable the creation of automation rules and rou-
tines, empowering IoT devices to operate autonomously based on
user-defined logic.
IoT Devices. Smart home IoT devices feature a wide variety of
sensors and actuators to interact with surrounding environments.
They use various wireless communication technologies, such as Wi-
Fi, Zigbee, or Z-Wave, to exchange sensing and actuating messages
with IoT servers. Each device typically possesses a unique set of
functionalities, represented by distinct attributes. Device manufac-
turers develop specialized APIs to facilitate access to these attributes
via wireless communications. However, differences in wireless pro-
tocols and message formats across devices complicate direct control
through smartphone apps and hinder inter-device communication.
To bridge this gap, IoT devices from different manufacturers are of-
ten integrated into an IoT home automation platform (e.g., Amazon
Alexa) via smart IoT hubs.
1https://anonymous.4open.science/r/SmartThings-Edge-Driver-Auto-Patching-49CE

https://anonymous.4open.science/r/SmartThings-Edge-Driver-Auto-Patching-49CE/README.md

Discovering and Exploiting IoT Device Hidden Attributes:
A New Vulnerability in Smart Homes CCS ’25, October 13–17, 2025, Taipei, Taiwan

Zigbee Device

Endpoint 1 Endpoint 2

Cluster ID_1
(Input Cluster)

Cluster ID_2
(Output Cluster)

......

Attr ibute ID_1
(Mandatory)

Attr ibute ID_2
(Optional)

......

Yale Assure Lock

Endpoint ID 1

Door Lock cluster

LockStateAutoRelockTime

......

......

......

Figure 2: Cluster hierarchy and the structure of a Zigbee node

2.2 Edge Drivers
Edge drivers are software programs running on smart home hubs
to support third-party IoT devices. As the middleware bridging
IoT devices and home automation platforms, edge drivers are re-
sponsible for mapping different types of IoT device messages into
unified formats that a home automation platform can understand.
A typical edge driver is designed to integrate one or several spe-
cific types of IoT devices that share common functionalities (e.g.,
measuring temperature). They can be developed either by home au-
tomation platforms or by IoT device manufacturers. For platforms
(e.g., SmartThings) where device manufacturers are required to
provide their edge drivers, users can replace manufacturers’ edge
drivers with custom ones for devices. In this paper, we primarily
use Zigbee networks to demonstrate the hidden attribute attack.

2.3 The Problem Scale
More and more smart home users are using smart home automation
platforms, enabling the automation of IoT devices from different
vendors through user-customized rules [44]. Leading platforms
such as Amazon Alexa, Samsung SmartThings, and Google Home
have over 100 million users globally [47, 50]. These users could be
impacted by the vulnerability disclosed in this paper. Moreover,
a user study by Chi et al. [36] reports that 61 out of 85 Amazon
Mechanical Turk respondents use at least one device on automa-
tion platforms (not the vendor platform), potentially subject to the
hidden attribute attack.

2.4 Zigbee Network and Device Hierarchy
A typical Zigbee network has only one Zigbee Coordinator (ZC),
which regulates the commissioning and joining of other devices in
the network. The Zigbee network created by the ZC is uniquely
identified by a 16-bit Personal Area Network Identifier (PAN ID)
and a 64-bit Extended PAN ID (EPID) [10]. Each node has a 64-
bit unique MAC address assigned by its manufacturer. When a
Zigbee device joins a Zigbee network, it receives a 16-bit network
address, which is used as the source or destination address for
Zigbee communications. The address 0x0000 is reserved for the ZC,
and all other devices receive a randomly generated address [2].

Figure 2 illustrates the cluster hierarchy of a Zigbee node, using
the Yale Assure Lock as an example. A Zigbee device has one or
more endpoints, each containing several clusters. The Zigbee Clus-
ter Library (ZCL) [31] defines the attributes for each cluster. The
components are explained below.
Endpoint: Endpoints are logical extensions that support multiple
applications. They are addressed with integers from 0 to 255. End-
point 0 is used for the configuration of the Zigbee device, and 255
is used for broadcasting to all endpoints.

Cluster: A set of functions defined in the ZCL [31] to build Zigbee
applications, identified by a 2-byte cluster ID. There can be multiple
clusters on each endpoint, which are either Input (server) or Output
(client). Servers store and manage attributes, while clients manipu-
late them. Commands like Read/Write Attributes are sent by clients
and received by servers, with responses sent back from servers
to clients. In this work, we focus on servers (i.e., Input Clusters)
that are related to configurations and can be modified to change
the behavior of devices. Moreover, manufacturers are free to add
manufacturer-specific clusters to a standard device endpoint.
Attribute: A cluster attribute is a variable with a defined 2-byte at-
tribute ID, data type, and access type (e.g., Read, Write, Read/Write,
Reportable). Each attribute ID is associated with an attribute name
defined in the ZCL. If an attribute supports “Read” access, its value
can be read by a Read Attributes command. If it supports “Write”, its
value can be modified by a Write Attributes command. Each cluster
may include multiple attributes, such as device states or data items.
Some mandatory attributes must be implemented by manufacturers
to fulfill the desired functionalities if a device includes the cluster.
Other attributes are optional, and it is the manufacturer’s choice to
implement them. Manufacturers can also add manufacturer-specific
attributes to a standard cluster.

3 The System and Threat Models
3.1 The System Model
In our study, we focus on a typical smart home setup, as illus-
trated in Figure 3, which includes IoT devices, a smart home hub,
a home automation cloud server, and a smartphone IoT app. The
platform operator (e.g., Samsung) can directly control the hub and
the smartphone app. Note that third-party IoT devices are pro-
duced by various third-party manufacturers. The cloud server is
responsible for exchanging event messages and commands with
IoT devices via the smart home hub. Additionally, it hosts home
automation rules that are triggered by event messages. When a
homeowner uses the smartphone app to view or control an IoT
device, the view/control command is sent from the app to the cloud
server and then to the hub. An IoT hub is equipped with Wi-Fi
and Zigbee/Z-Wave modules, which can be used by edge drivers to
communicate with a wide range of IoT devices. Most smart home
users rely on the manufacturer’s official drivers that are pre-loaded
on the hub. Smartphones typically lack Zigbee and Z-Wave com-
munication capabilities, preventing apps from directly accessing
IoT devices. Consequently, most Zigbee/Z-Wave devices are de-
signed to operate with third-party smart hubs and usually do not
come with a manufacturer-provided smartphone app. Thus, users
do not have a mechanism to view or access hidden attributes of the
Zigbee/Z-Wave devices.

3.2 The Threat Model
TheAttackTarget.The target of the attack could be any residential
or organizational IoT automation network and the devices within it.
The vulnerabilities identified in this study are inherent in the design
of home automation platforms. Therefore, all enrolled devices that
do not carefully handle their attributes and APIs are susceptible
to the attack. The attack is not limited to devices from specific

CCS ’25, October 13–17, 2025, Taipei, Taiwan Xuening Xu, Chenglong Fu, Xiaojiang Du, and Bo Luo

Smart Home Hub

edge driver

Cloud Server

Smartphone AppIoT devices

automation

Figure 3: Overview of IoT devices in smart homes.

manufacturers. Instead, general Zigbee, Z-Wave, and Wi-Fi devices
could all be vulnerable to the attack.
The Attack Objective. The attacker attempts to interfere with the
operation of the target IoT devices, particularly to disrupt safety-
critical operations. Another objective is to remain stealthy, i.e., the
changes to device attributes are expected to be unnoticeable to the
victim. For instance, an effective attack is to significantly delay the
auto-lock function of a smart lock, while the device owner does
not notice any change or alert in the home hubs or smartphone
apps. More specifically, the attacker focuses on hidden attributes,
whose threat stems from their inherent stealth. Regular attribute
modifications typically trigger visible notifications or alerts, which
can be detected by users or security monitoring systems. In con-
trast, hidden attributes can be altered silently, allowing attackers
to manipulate device behavior without raising suspicion. Because
these attributes are not known to users, unauthorized changes are
unlikely to be noticed and cannot be easily reverted even after
detection, unless resetting or reconfiguring the device. This makes
hidden attributes particularly attractive for attackers aiming to
establish persistent, undetected control over IoT devices, such as
through long-term backdoors.
The Attackers. We assume the attacker has control of a malicious
device on the target home automation platform. This is achievable
by an external adversary or a malicious insider of the network. In
this paper, we implement the external attack, which does not
rely on such a strong assumption. The insider attack is presented
in Appendix A due to page limit.

As an external adversary, they can plant an attack device into
the network. To do so, the attacker may employ a known attack,
e.g., [39]. In Section 3.3, we will present an approach that places
a malicious device into a Zigbee network from outside of the Zig-
bee network without knowing network credentials beforehand.
In this case, the attacker needs to be within the wireless signal
range of the target network. This is easily achievable since the
practical range of Zigbee networks is up to 325 feet indoors and
980 feet outdoors [35, 65], e.g., the attacker may park a car near
the target household and launch the attack from the car. Because
legacy Zigbee devices only support the default link key [48], Zig-
bee coordinators across all Zigbee networks accept the default link
key, known as “ZigbeeAlliance09” [24]. External attacks rely on
the weak authentication mechanisms, which are widely adopted
by existing Zigbee hubs and devices. Also, the attacker needs a
window of opportunity when the victim sets the hub into pairing
mode.

The attacker does not interfere with users’ normal interactions
with the target device, i.e., the device operates normally until the

attacker explicitly interrupts a function. The attacker does not com-
promise the codebase of the victim devices or any other component
of the target home automation network. The attacker does not
attempt to access or compromise the companion apps, users’ smart-
phones, or the cloud servers – all these components are considered
benign and secure.

3.3 Attack Precursors
In an external attack, the attacker deploys an attack device, which is
a regular Zigbee node, such as a light switch, with the “customized”
function to conduct the hidden attribute attack. The attack prepa-
ration involves the following steps:
1) Approaching. The adversary gets into the range of the target
Zigbee network (i.e., a maximum range of 325 feet indoors and
more than 980 feet outdoors [35, 65]), which is feasible.
2) Reconnaissance.Note that the IEEE 802.15.4 MAC layer encryp-
tion is not adopted in practice due to the high power consumption
of cryptographic operations and the challenges of key distribu-
tion [64]. Many IoT devices are battery-powered, and employing
MAC layer encryption significantly shortens their battery life. This
is the main reason why most IoT device manufacturers do not
adopt MAC layer encryption. Furthermore, it does not address this
issue for the billions of existing (legacy) IoT devices by making it
mandatory for IoT manufacturers to use MAC layer encryption.
This leaves the network layer header exposed as plaintext, and the
attacker can sniff Zigbee packets to obtain the plaintext information
(e.g., network addresses) in the network layer header. Note that the
MAC layer header is in plaintext even if MAC layer encryption is
used. It is important to emphasize that the network layer payload
and the upper layers are still encrypted by the network key.
3) Disconnecting. The attacker can utilize existing attacks [29, 64]
to force a smart home hub into pairing mode. For instance, the
attacker could carry out the Disconnection attack proposed in [64]
by bit-level manipulations, which causes a Zigbee device to be
disconnected from the network. This necessitates a manual reset
and a commissioning phase in order to reconnect the Zigbee device
to the network. Note that the Disconnection attack can generate
protocol-compliant packets through bit-level manipulations on the
encrypted network payload, and can be launched outside the Zigbee
network without needing to know the Zigbee network key. We
have implemented the Disconnection attack proposed in [64] and
the details are given in Section B.
4) Joining. The attack device automatically joins the target Zigbee
network without knowing the network key during the commis-
sioning phase of the coordinator, which is an opportunity window
created by the Disconnection attack. Note that once the attack de-
vice has been placed near the target Zigbee network, it can keep
scanning the environment to detect the re-pairing opportunity win-
dow to join. After that, the attack device receives the network key
from the coordinator. With the network key, the attack device can
decrypt Zigbee packets to find devices in the clusters of interest.
The attacker extracts the information of the target devices, e.g.,
network addresses, cluster IDs, and endpoint numbers, and utilizes
them for the hidden attribute attack.

Once joining the network, the attack device could directly send
commands to a target device. The target device will change its

Discovering and Exploiting IoT Device Hidden Attributes:
A New Vulnerability in Smart Homes CCS ’25, October 13–17, 2025, Taipei, Taiwan

status and then generate an event (e.g., a feedback event) indicating
the change. The user and the IoT system can detect the device status
change and/or the feedback event and discover the above attack.
On the other hand, the hidden attributes are not visible to users,
and their modifications cannot be easily detected, making them a
unique and significant concern for smart homes.

4 Discovering Hidden Attributes
In this paper, we present a new vulnerability referred to as the
hidden attribute vulnerability, which can be exploited by an
attacker to launch a hidden attribute attack. The attack overwrites
the values of the hidden attributes on a target IoT device, causing it
to operate in an undesired state. This could lead to serious security
or safety risks, e.g., a motion sensor failing to detect or report the
movements of intruders.

4.1 Definition of Hidden Attributes
Edge drivers are highly diverse and their coverage of attributes
depends on the efforts and carefulness of developers. Many edge
drivers only implement essential attributes of the corresponding IoT
devices and omit others. The omitted attributes, although supported
by devices with open APIs, are invisible and inaccessible to the
home automation platform and homeowners. Below we formally
define the hidden attributes.
The Hidden Attributes refer to attributes of IoT devices that
satisfy all the following conditions: 1) they are implemented by
IoT device manufacturers and can affect the devices’ behaviors; 2)
they can be accessed and modified by directly calling APIs on IoT
devices; and 3) they are not supported in the edge drivers deployed
in the smart home hubs. Note: General users cannot see the hidden
attributes when they use the existing remote control interfaces,
including but not limited to third-party apps, voice assistants, IoT
hubs, and most companion apps provided by device manufacturers.

4.2 Discovering Zigbee Attributes
Here we aim to discover attributes that exist on IoT devices. The
discovery process can be conducted in a controlled environment
with software tools that automatically scan devices, where it is
reasonable to assume that there is sufficient time and resources to
discover attributes on Zigbee devices. Moreover, a custom Zigbee
coordinator can be developed to facilitate the discovery process, as
it allows for flexible configuration of the Zigbee network as needed,
enabling a thorough exploration of device attributes. According to
the ZCL, two commands are used to discover attributes supported
in a Zigbee device: “Discover Attributes” and “Read Attributes”. For
both commands, the “Manufacturer Specific” sub-field must be
set to “True” in order to discover manufacturer-specific attributes.
Otherwise, only ZCL-defined attributes will be discovered.
Discover Attributes Command: A Discover Attributes command
takes a 16-bit “Start Attribute Identifier” as the starting number and
another 8-bit “Maximum Attribute Identifiers” as the maximum
number of attribute IDs to return. A list of supported attributes is
included in the response to the Discover Attributes command (a
screenshot is given in Figure 10).

Table 1: Subset of Door Lock cluster attributes defined in the
ZCL: R - Readable; W - Writable; *W - Optionally Writable;
P - Reportable; M - Mandatory; O - Optional.

Cluster: Door Lock (0x0101)

Attr. ID Attribute Name Type Access M/O

0x0000 LockState enum8 RP M
0x0001 LockType enum8 R M
0x0002 ActuatorEnabled bool R M
0x0023 AutoRelockTime uint32 R*WP O
0x0024 SoundVolume uint8 R*WP O
0X0025 OperatingMode enum8 R*WP O
0x002B EnablePrivacyModeButton bool RWP O
0x0030 WrongCodeEntryLimit uint8 R*WP O
0x0031 UserCodeTemporaryDisableTime uint8 R*WP O

Read Attributes Command: A Read Attributes command takes
a list of attribute IDs as parameters. If the device supports the at-
tribute, a status “SUCCESS” with a code 0x00 is returned in the
Read Attributes Response command. Otherwise, a status “UNSUP-
PORTED_ATTRIBUTE” with a code of 0x86 is returned to indicate
that the attribute does not exist on the device (see screenshot in
Figure 11). By traversing all possible attribute IDs (i.e., 0 to 65535),
the supported attributes within each cluster can be obtained.

After obtaining device attributes, we need to know the value
range that each attribute accepts, and then we can write with valid
values. Note that in the Discover/Read Attributes Response com-
mands, every supported attribute is returned along with the data
type (e.g., 8-bit Enumeration, Boolean). Although the data type indi-
cates the value range to some extent, not every value in that range
is guaranteed to be accepted by the particular Zigbee device, as the
manufacturer’s implementation may add additional constraints on
the valid values due to various considerations. For example, the
data type of the attribute OperatingMode is an 8-bit enumeration
as shown in Table 1, which has 256 possible values. However, the
Zigbee Yale Assure Lock only accepts 0, 1, 2, and 3 as valid values
since it only supports 4 different operating modes.

We can try all possible values for the specific data type and check
if values are accepted by the target Zigbee device. Specifically, we
sendWrite Attributes commands to the target device in an attempt to
set new values for the attributes. In eachWrite Attributes command,
we need to include the new value and the data type of the attribute.
Three possible status codes can be received in the Write Attributes
Response command: 1) SUCCESS: attribute is updated successfully;
2) INVALID_VALUE: the supplied value is invalid and thus not
accepted by the target device; 3) READ_ONLY: attribute is read-
only. We record all values with a returned status of SUCCESS as
valid values for a writable attribute, and these values can be used
later for the exploitation of the hidden attributes.

4.3 Discovering Z-Wave and Wi-Fi Attributes
Z-Wave. Exploring the attributes of Z-Wave devices involves the
utilization of open-source libraries, such as Z-Wave JS [23], to dis-
cover Z-Wave device attributes. Z-Wave JS acts as a versatile tool
that can be employed to create a server-like environment for Z-
Wave network management. Note that running the library requires
expertise in IoT development and dedicated wireless dongles. Most

CCS ’25, October 13–17, 2025, Taipei, Taiwan Xuening Xu, Chenglong Fu, Xiaojiang Du, and Bo Luo

general users would not be able to do this and instead use smart-
phone apps to control IoT devices. This tool facilitates the interac-
tion with Z-Wave devices, enabling not only device management
but also effective discovery of their attributes.
Wi-Fi. Wi-Fi devices have considerable flexibility in attribute defi-
nition. On a Wi-Fi device, its manufacturer can freely customize
the names and contents of attributes and the format of messages.
To enhance interoperability with various smart home hubs, many
Wi-Fi IoT devices implement the Simple Service Discovery Protocol
(SSDP), thereby achieving a plug-and-play capability. When em-
ploying SSDP, these devices respond to discovery requests from
smart home hubs with a URL pointing to an XML document that
contains a detailed list of supported attributes. A simple program
or some existing tools [1, 4] can be used to automatically detect
SSDP-supported Wi-Fi devices in the vicinity.

4.4 Manual Discovery of Hidden Attributes
Now that we have identified all supported attributes on IoT devices,
the next step is to determine which attributes are hidden. This
involves identifying observable attributes on home automation
platforms, with the remaining classified as hidden. This can be
done either manually or through an automated approach (discussed
in Section 4.5).

Using Zigbee as an example, we focus on attributes with “Write”
access, as these can be modified by an attacker, potentially com-
promising smart home security. We use the Door Lock cluster to
illustrate the presence of hidden attributes. Table 1 lists the manda-
tory (M) and optional (O) attributes of the Zigbee Door Lock cluster.
Mandatory attributes include lock state, lock type, and actuator sta-
tus, while optional attributes enhance functionality if implemented
by manufacturers.

For instance, when a Yale Assure Lock is connected to a Smart-
Things hub, only two attributes, LockState and BatteryPercentageRe-
maining, are visible in the app. However, the lock supports addi-
tional attributes like AutoRelockTime and SoundVolume, which are
hidden from the user. Changes to these hidden attributes, which
are not reflected in the app, could lead to significant safety and
security risks, as detailed in Section 6.

4.5 Automated Discovery of Hidden Attributes
For platforms with open-source edge drivers or APIs, we develop
automated methods to retrieve observable attributes. In the current
work, we implement two automated methods on the SmartThings
platform: 1) using the SmartThings API [59], and 2) analyzing edge
drivers [60].
SmartThings API manages IoT devices on the SmartThings plat-
form and accesses device attributes via HTTP GET requests, re-
turning a list of connected devices with their supported attributes
in JSON format. This method can be used when IoT devices are
already connected to the platform.
Edge Drivers. Each edge driver contains a list of supported at-
tributes for different IoT devices. By analyzing edge drivers, we can
extract attributes supported by each device model. This method
can be used when IoT devices are unavailable or not connected to
the platform.

Target DeviceCustom Device
(Attack Device)

Smart Home Hub

malicious
command

Attri 1
Attri 2

Attri 3
Attri 4

Figure 4: Overview of the hidden attribute attack. The at-
tributes within the dotted box are hidden attributes.

We implement both methods to automatically obtain observable
attributes on the SmartThings platform. The two automated meth-
ods obtain the same results for the same device models, confirming
that the unobservable attributes are hidden.

5 Exploiting Hidden Attributes
As discussed in Section 4, the hidden attribute vulnerability exists
in many IoT devices, including Zigbee, Z-Wave, and Wi-Fi devices.
This vulnerability can be exploited by an attacker to launch a hidden
attribute attack, which can overwrite the values of hidden attributes
on IoT devices and cause security issues in a smart home. In this
work, we mainly use Zigbee devices to demonstrate the hidden
attribute attack.

5.1 Overview of the Hidden Attribute Attack
In this work, we present a new attack, referred to as the Hidden
Attribute Attack (illustrated in Figure 4): The attacker overwrites
the hidden attribute values on a target IoT device so that it operates
in an undesired state, which could cause serious security or safety
risks, e.g., a motion sensor fails to detect or report an intruder’s
movements. The attack is expected to be stealthy – users would
not receive any notification or alert through smartphone apps or
other channels.

The hidden attribute attack can be classified into two categories
based on the target device type: Attacks on Actuator Attributes and
Attacks on Sensor Attributes.
Attacks on Actuator Attributes. This attack modifies actuators’
attributes. Since an actuator is the endpoint of executions, changes
to attribute values usually affect the device’s configurations and
result in different behaviors. Such intentional misconfigurations
could directly lead to safety and security issues. For example, ac-
cording to the ZCL Specification, the AutoRelockTime attribute is
“the number of seconds to wait after unlocking a lock before it
automatically locks again”. Maliciously changing the value of this
attribute on a smart lock to a large value causes the lock not to be
automatically locked promptly after the user leaves home, leaving
a time window for burglars or intruders to enter the home.
Attacks on Sensor Attributes. Zigbee and Z-Wave sensors de-
tect changes in a physical environment. They usually report those
changes to a smart home hub and then to the cloud server to sup-
port home automation functions. Changes in the sensor attribute
values may affect the execution of automation rules. Many automa-
tion rules are related to the security and safety of a smart home.
If they are not properly executed, home security and safety may
be compromised. For instance, a simple rule, “When the motion

Discovering and Exploiting IoT Device Hidden Attributes:
A New Vulnerability in Smart Homes CCS ’25, October 13–17, 2025, Taipei, Taiwan

sensor detects motion while the user is not home, sound the alarm”
aims to detect unusual movements (e.g., a burglary) when the user
is not at home. By maliciously changing the sensitivity of motion
detection to a minimum value, the motion sensor may fail to detect
the motion when a burglar breaks into the home. As a result, the
alarm would not sound, and the user may lose valuable items.

5.2 The End-to-End Hidden Attribute Attack
In this subsection, we present the end-to-end hidden attribute at-
tack, which has been implemented by our team using real Zigbee
devices and networks. An attacker can place a custom Zigbee de-
vice near the victim’s home as the attack device and connect it
to the home’s Zigbee network. A custom Zigbee device is a gen-
eral Zigbee device with the customized function to send Write
Attributes commands. The Zigbee communication range can be
up to 325 feet indoors. Note that except during the commission-
ing phase (the pairing mode), a Zigbee network is closed and the
Zigbee coordinator does not accept any joining requests from new
Zigbee devices. To make a Zigbee coordinator enter pairing mode,
the attacker can utilize existing methods (e.g., the Disconnection
attack in [64], the selective jamming and spoofing attacks in [29]),
which require the user to reset the devices (otherwise, the devices
cannot be used). In our work, we have implemented the Discon-
nection attack in [64]. Thanks to the source code shared by the
authors of [64], our implementation can successfully disconnect a
Zigbee device from a Zigbee network. The implementation details
are given in Section B. After a Zigbee device is disconnected, the
user has to make the smart home hub enter pairing mode in order
to reconnect the disconnected device.

The attacker does not have to stay near the victim’s house to
wait for the time window of re-pairing. Instead, the attacker can
leave the attack device there. The attack device continuously scans
nearby Zigbee networks and waits until a time window occurs
(i.e., when the user re-pairs a disconnected device). This attack
can be considered a persistent threat and does not have a tight
time requirement. In the worst case, if the user does not re-pair a
disconnected device for a long time and the attack device drains its
battery, the attacker can come back later and replace/recharge the
battery multiple times until the attack is successful. Additionally,
the attacker may attach a power bank or a solar charger power
bank to the attack device, which could extend the battery life to
months or even years (see Table 7). To sum up, there is no tight
time requirement for launching the attack. Besides a targeted attack
that waits for the re-pairing time window, the attacker can conduct
untargeted attacks by scanning nearby Zigbee networks and joining
the one that happens to be in pairing mode and launching attacks.

During the pairing phase, the attack device can be automatically
(i.e., without any manual operations) connected to the Zigbee net-
work and then obtain the network key from the Zigbee coordinator,
which is used to decrypt Zigbee messages. Because Zigbee devices
could go offline from time to time even without attacks, a user
would not think that this is an attack. Then the attack device sniffs
Zigbee packets and finds events from a device of interest to obtain
the network address and the endpoint number, which are used to
send Write Attributes commands to the target device. The above at-
tack can be done within a few minutes after the attack device joins

Table 2:Writable or observable attributes from scanning on
devices: Yale Assure Lock, Kwikset Smart Lock, Frient Smart
Siren, and Philips Hue Motion Sensor. Observable attributes
are noted in the table and others are writable. Entries with
“-” symbol mean the attribute is not supported. The unit of
time-related value is seconds. “mfr” means “manufacturer”.

Attr. ID Attribute Name Type Value Range

Lock

Yale Kwikset
Cluster: Door Lock (0x0101)

0x0000 LockState (Observable) enum8 ReadOnly ReadOnly
0x0021 Language string es,en,fr -
0x0022 LEDSettings uint8 - 0, 2
0x0023 AutoRelockTime uint32 0 - 232 6 - 28
0x0024 SoundVolume uint8 0, 1, 2 0, 2
0x0025 OperatingMode enum8 0, 1, 2, 3 ReadOnly
0x0028 EnableLocalProgramming bool - 0, 1
0x0029 EnableOneTouchLocking bool 0 - 28 -
0x002A EnableInsideStatusLED bool 0 - 28 -
0x002B EnablePrivacyModeButton bool 0 - 28 -
0x0030 WrongCodeEntryLimit uint8 3 - 10 1 - 10
0x0031 UserCodeTemporaryDisableTime uint8 10 - 180 1 - 28
0x0032 SendPINOverTheAir bool 0 - 28 0 - 28
0x0033 RequirePINforRFOperation bool - 0 - 28
0x0040 AlarmMask map16 0 - 216 0 - 216
0x0041 KeypadOperationEventMask map16 0 - 216 0 - 216
0x0042 RFOperationEventMask map16 0 - 216 0 - 216
0x0043 ManualOperationEventMask map16 0 - 216 0 - 216
0x0044 RFIDOperationEventMask map16 0 - 216 -
0x0045 KeypadProgrammingEventMask map16 0 - 216 0 - 216
0x0046 RFProgrammingEventMask map16 0 - 216 0 - 216
0x0047 RFIDProgrammingEventMask map16 0 - 216 -

Cluster: Power Configuration (0x0001)

0x0021 BatteryPercentageRemaining
(Observable) uint8 ReadOnly ReadOnly

Siren

Frient Smart Siren
Cluster: IAS WD (0x0502)

0x0000 MaxDuration uint16 0 - 216

M
otion

Sensor

Hue Motion Sensor
Cluster: Occupancy Sensing (0x0406)

0x0000 Occupancy (Observable) map8 ReadOnly
0x0010 PIROccupiedToUnoccupiedDelay uint16 0 - 216
0x0030 Motion Sensitivity (mfr-specific) uint8 0, 1, 2

Cluster: Power Configuration (0x0001)

0x0021 BatteryPercentageRemaining
(Observable) uint8 ReadOnly

Cluster: Temperature Measurement (0x0402)
0x0000 MeasuredValue (Observable) int16 ReadOnly

the Zigbee network. Furthermore, the attack device can disguise
itself as a commonly used device, such as a light switch or a smart
plug, so that it would not be detected by the user.

6 Evaluation
We conduct a comprehensive evaluation of the hidden attribute
vulnerability and attack. This work primarily focuses on Zigbee
devices, which are presented in Section 6.1 through Section 6.3.
We also evaluate the hidden attribute issue of Z-Wave and Wi-Fi
devices in Section 6.4. Similar to the limitations in other works,
such as Protected or Porous [51], we also require physical testing
targets (i.e., various IoT devices in our case) for evaluation, which
affects scalability. Nevertheless, we make our best efforts to select
representative devices that can effectively demonstrate our findings.
We test twenty-six popular commercial off-the-shelf Zigbee devices
from twelve different manufacturers on two popular IoT platforms:
Samsung SmartThings and Amazon Alexa. In total, we identify
eighty-eight hidden attributes on the Zigbee devices tested in this
work. We obtain the above results based on experiments conducted

CCS ’25, October 13–17, 2025, Taipei, Taiwan Xuening Xu, Chenglong Fu, Xiaojiang Du, and Bo Luo

independently by two authors and then confirmed by a third au-
thor. Due to the page limit, we only present and discuss the results
of some devices as listed in Table 2. The results of other tested
devices are provided in Table 9 in Appendix F. After identifying
hidden attributes, we further validate and demonstrate the end-to-
end hidden attribute attack on several security-critical devices. The
implementation details of this process are provided in Appendix B.
The selection of the twenty-six Zigbee devices is guided by the fol-
lowing considerations: 1) Popular Brands: Devices are chosen from
well-known and trusted brands to ensure coverage and reliability.
2) Comprehensive Coverage: A wide range of device categories
is included, such as locks, motion sensors, and water sensors, to
ensure diverse functionalities and applications. Our experiments
show that all these devices are vulnerable to the hidden attribute
attack, and it does not matter whether the Zigbee devices use the
default link key or not.

6.1 Results of Attribute Exploration
To systematically identify attributes supported by each Zigbee de-
vice, we develop an automated Zigbee attribute scanner using a
laptop equipped with a SONOFF Zigbee 3.0 USB Dongle [18]. On
this laptop, we leverage the Zigbee2MQTT [46] library to establish
a Zigbee network coordinator, responsible for managing and in-
terfacing with the Zigbee devices being tested. Building upon this
library, we develop an application module that can autonomously
scan and record the attributes of the connected devices. In this work,
we focus on the primary Zigbee clusters on the Zigbee devices (e.g.,
the Door Lock cluster on smart locks and the Occupancy Sensing
cluster on motion sensors), and non-primary clusters such as Power
Configuration will not be discussed due to space limit.

As described in Section 4.2, Discover Attributes and Read At-
tributes commands are used to identify supported attributes. How-
ever, we find that some Zigbee devices return only a limited number
of attribute IDs (e.g., 10), even when the “Maximum Attribute Iden-
tifiers” is set to 255, likely due to a hardcoded constraint in the
device’s firmware. To address this, we use the Read Attributes com-
mand to identify all supported attributes. We develop a customized
Read Attribute Function that scans all possible 16-bit attribute IDs
within the cluster (0 to 65535), recording those with a “SUCCESS”
status. This process takes less than two hours at a rate of 10 packets
per second and can be completed by attackers in preparation at
their own places as mentioned in Section 4.2. Additionally, we cre-
ate a function to write attribute values to the target device, filtering
out READ_ONLY attributes and determining valid value ranges for
writable attributes.

Although some Zigbee device manufacturers have official docu-
ments [26] that describe the attributes supported by their devices,
most end users do not search for or read such technical documents.
Additionally, the attribute names listed in the documents often dif-
fer from those defined in the ZCL. Furthermore, some attributes,
such as sendPINOverTheAir, discovered in our work are not listed
in the manufacturers’ documents.

There are many writable and hidden attributes found in the de-
vices tested in this work. For instance, we discover a total of 29
attributes for the Zigbee Yale Assure Lock under the Door Lock clus-
ter, of which 18 are writable. For the Zigbee Kwikset 914 SmartCode

Smart Lock, 29 attributes are discovered under the Door Lock clus-
ter, 14 of which are writable. Among all the discovered attributes for
the two locks, only one attribute (i.e., LockState) is observable, and
the rest are hidden. Table 2 lists all the writable attributes within
the Door Lock cluster for the two locks. Note that the values in this
table can be “successfully” written to devices (the Write Attribute
commands yield “SUCCESS”, as mentioned in Section 4.2), but may
not necessarily take effect due to some implicit constraints set by
manufacturers. Among the over twenty attributes in the Door Lock
cluster, only one attribute (LockState) is observable to users. All the
writable attributes are hidden from the end users, and users would
not even notice when these attributes are maliciously changed. This
hidden attribute problem creates serious vulnerabilities that attack-
ers can exploit to launch attacks, which could affect the security
and safety of smart homes and homeowners.

Table 2 also lists the writable attribute in the IAS WD cluster
supported on the Frient Smart Siren. It does not have any observ-
able attributes on smartphone apps. In addition, Table 2 lists the
writable or observable attributes supported on the Philips Hue Mo-
tion Sensor. The three observable attributes are noted (with the
word “Observable” in blue) in the table, and the other two attributes
are writable. We discuss the observable attributes in Section 6.2.

The Yale Assure Lock (YRD226-HA2-619) [21] supports three
languages: Spanish (es), English (en), and French (fr). The lock’s
language changes when a new language code is written to the
Language attribute. The AutoRelockTime attribute, with a uint32
data type, accepts values between 0 and 4,294,967,295 (i.e., 232,
the maximum of a 32-bit number). However, when set to a very
large value, the lock defaults to relocking three minutes after the
last unlock. Reading the AutoRelockTime attribute reveals that the
lock limits this value to a maximum of 180 seconds when a value
greater than 180 is provided. The SoundVolume attribute adjusts the
chime volume, where 0 mutes it, and the maximum value provides
the loudest chime. The OperatingMode attribute supports several
modes: 1) Normal Mode: enable all interfaces (keypad, RF, RFID); 2)
Vacation Mode: only enable RF interaction and disable keypad; 3)
Privacy Mode: only the thumb turn works, disabling all external
interactions; 4) No RF Lock or Unlock: disable RF interaction.

WrongCodeEntryLimit and UserCodeTemporaryDisableTime de-
fine the number of incorrect passcode attempts allowed before
lockout and the lockout duration, respectively. SendPINOverTheAir
controls whether the PIN code in door lock messages is masked.
RequirePINforRFOperation determines if a PIN is needed for RF lock
operations. EnableOneTouchLocking, EnableInsideStatusLED, and
EnablePrivacyModeButton are boolean attributes. Although they
accept values from 0 to 255, 0 means “False” and any positive value
means “True”. If EnablePrivacyModeButton is set to “True”, the lock
can switch to Privacy Mode with a single press of the privacy but-
ton. The rest of event mask attributes accept values from 0 to 65535
and can be configured by setting the corresponding bit in the mask.

Most of thewritable attributes on the Kwikset Smart Lock (914TRL
ZB 3.0 L03) [6] are similar to those of the Yale Assure Lock. In addi-
tion, the Kwikset Smart Lock supports the LEDSettings to indicate
if the lock uses LEDs for signalization. Unlike the Yale Assure Lock,
which sets the value to 180 for any value greater than 180, the
AutoRelockTime attribute only accepts numbers from 6 to 255. The
OperatingMode attribute is Readable and Optional Writable for

Discovering and Exploiting IoT Device Hidden Attributes:
A New Vulnerability in Smart Homes CCS ’25, October 13–17, 2025, Taipei, Taiwan

Table 3: Consequences of the Actuator Attribute Attack on hidden attributes. “Affected Devices” only includes tested devices.
Attr. ID Attribute Name Original Original Behavior New New Behavior Affected Devices

0x0023 AutoRelockTime 15 seconds The door is locked again 15
seconds after being unlocked. 180 seconds The door is locked again 180

seconds after being unlocked. Yale, Kwikset

0x0029 EnableOneTouchLocking True The lock can be locked with one
touch on the touchpad. False The lock cannot be locked with one

touch on the touchpad. Yale

0x0030 WrongCodeEntryLimit 3 The lock enters a lockout state after
3 incorrect code attempts. 10 The lock enters a lockout state after

10 incorrect code attempts. Yale, Kwikset

0x0031 UserCodeTemporaryDisableTime 60 seconds The lock shuts down for 60 seconds
after reaching the wrong code limit.

10s for Yale
1s for Kwikset

The lock shuts down for 10 / 1 second(s)
after reaching the wrong code limit. Yale, Kwikset

0x0032 SendPINOverTheAir False The PIN field is masked in any
door lock cluster message payload. True The PIN field is not masked in

any door lock cluster message payload. Yale, Kwikset

0x0000 MaxDuration 900 seconds The siren sounds for 900 seconds
before it stops. 0 seconds The siren does not sound at all. Frient Siren

locks (see Table 1), but for the Kwikset Smart Lock, it is read-only.
The local programming features include adding and deleting user
codes, schedules and so on, which can be enabled by setting the
EnableLocalProgramming attribute to “True”.

The Frient Zigbee Smart Siren (SIRZB-110) [5] is used to emit
loud alarm noise during emergencies. It can be flexibly integrated
into automation rules and triggered by various sensor events. We
identify one writable attribute: MaxDuration within the IAS WD
cluster. It specifies the maximum time that the siren will sound
continuously and accepts a value ranging from 0 to 65535. The
siren can be completely muted by setting this attribute to 0.

The Philips Hue Motion Sensor [11] has two writable attributes.
PIROccupiedToUnoccupiedDelay belongs to the Occupancy Sensing
cluster. It defines the shortest time for the sensor to change back to
the unoccupied status after detecting motion, and it has a configura-
tion range from 0 to 65534 seconds (more than 18 hours). The other
writable attribute with the ID 0x0030 is a manufacturer-specific
attribute and defines the sensitivity level of the motion sensor [7].
It can take values of 1, 2, or 3. The detection distance of the motion
sensor increases with higher values.

6.2 Observable Attributes in Apps
After identifying the attributes supported by the devices, we check
their availability on two popular IoT platforms: Samsung Smart-
Things hub V3 and Amazon Alexa Echo 4th Gen. We connect the
devices to the hubs and review all user interfaces, including apps,
automation rules, notifications, and voice commands, to determine
if the attributes in Table 2 are observable and configurable.

Table 2 shows that the two smart locks have two observable
attributes: LockState and BatteryPercentageRemaining, both visible
on the SmartThings app, while only LockState is shown on the
Alexa app. For the Frient Smart Siren, the attribute listed in Table 2
is hidden on the SmartThings app, and the siren is unsupported on
Alexa via direct connection to the Echo 4th Gen. Even when dele-
gated through other platforms like SmartThings, the MaxDuration
attribute remains hidden on Alexa. Additionally, Table 2 shows that
the Philips Hue Motion Sensor has three observable attributes on
the SmartThings app, but only Occupancy is displayed on Alexa.
The results show that IoT platforms and apps provide users access
to only a portion of the attributes while hiding the rest.

6.3 Consequences of Hidden Attribute Attack
We evaluate and show the effectiveness of the hidden attribute at-
tack. For the actuator attribute attack, we compare the target device

behaviors before and after the attack. For the sensor attribute attack,
we evaluate how the modified attribute affects automation rules.
We select seven Zigbee devices with different capabilities (i.e., lock,
siren, motion, vibration, presence, and temperature) to illustrate
the consequences of the actuator attribute attack and the sensor
attribute attack in Section 6.3.1 and Section 6.3.2, respectively.

6.3.1 Consequences of the Actuator Attribute Attack. We use two
popular Zigbee smart locks (Yale Assure Lock and Kwikset Smart
Lock) and one Zigbee smart siren (Frient Smart Siren) to demon-
strate the consequences of the actuator attribute attack. For the
attributes of the two locks and the siren in Table 2, we focus on
safety and security-related attributes to determine if the modified
attributes could cause safety or security issues. The behaviors of
the smart locks and the smart siren before and after the hidden
attribute attack are listed in Table 3, where the first five rows are
attributes of the Door Lock cluster, and the last row is an attribute
of the IAS WD cluster. Users can configure some hidden attributes
(e.g., AutoRelockTime, EnableOneTouchLocking, and SoundVolume)
directly on a lock by physically interacting with the lock but still
cannot see or configure them on smartphone apps. Due to page
limit, the exploitation built onWrongCodeEntryLimit and UserCode-
TemporaryDisableTime is presented in Appendix C.
Prolonging Auto Relock Time: A user sets the AutoRelockTime
to 15 seconds to ensure the door locks automatically when the user
leaves home. However, if an attacker extends this delay, the door
could remain unlocked for up to 180 seconds, providing a burglar
with the chance to enter the home.
Failure of One Touch Locking: One-touch Locking allows users
to lock doors by simply tapping a key or an area of the lock. How-
ever, this feature can be disabled by stealthily setting the EnableOne-
TouchLocking attribute to “False”. Victims accustomed to this feature
may tap the button as usual, unaware that the door has not locked,
increasing the risk of burglary. This attack can be amplified by
attacking the SoundVolume attribute. Typically, the lock plays an
acknowledgment chime after a one-touch lock to indicate success.
An attacker could silence this chime by setting the SoundVolume
attribute to 0 via a hidden attribute attack. As a result, users might
assume the absence of the chime is normal and fail to realize the
door is not actually locked.
PINCode Leakage: The SendPINOverAir is set to “False” by default
to mask the PIN code in the Zigbee payload. However, the hidden
attribute attack can easily change it to “True”, which makes the
PIN code displayed as plaintext in the Zigbee payload. After testing
this attribute on two smart locks, we find that neither smart lock

CCS ’25, October 13–17, 2025, Taipei, Taiwan Xuening Xu, Chenglong Fu, Xiaojiang Du, and Bo Luo

Table 4: Consequences of the Sensor Attribute Attack on hidden attributes and parameters.
Device Name Cluster→ Attribute Automation Rule Attack Method Consequences

Philips Hue
Motion Sensor Occupancy Sensing→

PIROccupied-
ToUnoccupiedDelay

When presence sensor turns inactive,
if motion sensor is inactive, lock the
door and arm security system.

Prolong “PIROccupiedToUnoccupiedDelay”
attribute so that motion sensor stays active.

Door is not locked and security system
is not armed when user leaves home.

Philips Hue
Motion Sensor

When detecting motion, if presence
sensor is inactive, sound alarm.

Prolong “PIROccupiedToUnoccupiedDelay”
attribute so that motion sensor stays active.

Burglary not detected since the
motion sensor is stuck at active.

Philips Hue
Motion Sensor

Occupancy Sensing→
Motion Sensitivity (0x0030)
(manufacturer-specific)

When detecting motion, if presence
sensor is inactive, sound alarm. Lower the sensitivity of motion sensor. Burglary not detected due to the low

sensitivity level.

SmartThings
Multipurpose

Sensor

Acceleration (0xfc02)
(manufacturer-specific)→

Vibration (0x0010)
(manufacturer-specific)

When detecting vibration on the safe
(the sensor is attached inside the safe),
if presence sensor is not present,
sound alarm and call 911.

Set “Maximum Reporting Interval” to
0xffff, so that the attribute will not be
reported.

The movement of the safe by a burglar
will not be reported. The alarm will
not sound, and 911 will not be called,
which causes a huge loss.

SmartThings
Presence
Sensor

Binary Input→
PresentValue

When presence sensor becomes
inactive, turn off humidifier, outlets,
and all light bulbs.

Set “Minimum Reporting Interval” to the
value larger than 100 seconds, or set
“Maximum Reporting Interval” to 0xffff.

Mistakenly turn off devices when user
is home, causing inconvenience
and safety issues, especially at night.

SmartThings
Motion Sensor
(w/ Temp)

Temperature
Measurement→
MeasuredValue

When temperature is below 18◦C, turn
on the heater. When temperature is
above 22◦C, turn off the heater.

Set “Maximum Reporting Interval” to 0xffff,
so that the attribute will not be reported.

Heater is not turned on or off, causing
fire or failing to keep the room (e.g.,
baby room) at desired temperature.

includes the PIN code in the general “lock”/“unlock” events or
commands. However, the Yale Assure Lock includes the PIN code in
the payload of the code registration event. By setting the attribute
to “True”, the attacker can easily obtain the PIN code from the
sniffed Zigbee packet, as illustrated in Figure 12.
Smart Siren Silencing: The MaxDuration attribute on a smart
siren usually has a default value (e.g., 900 seconds) that makes the
siren sound long enough to alert the user. However, an attacker can
silence the siren by setting MaxDuration to 0. As a result, the siren
will not sound, and the user will not be notified of any emergency.

6.3.2 Consequences of the Sensor Attribute Attack. We selected one
device from each of four popular sensor types: motion, vibration,
presence, and temperature. These devices are used to demonstrate
the severe consequences of sensor attribute attacks and how modi-
fied sensor attributes can disrupt automation rules.
Faking Motion Active: The PIROccupiedToUnoccupiedDelay at-
tribute can be set to an excessively large value (e.g., 65,534 seconds),
causing the motion sensor to remain active for an extended period
after detecting an initial motion event. During this time, the sensor
will not report any subsequent motion events. Table 4 lists several
rules affected by this hidden attribute attack, which can lead to seri-
ous security and safety issues. For example, in the first automation
rule, when the presence sensor becomes inactive, the conditions
are not met due to the prolonged duration of the motion active
event, preventing the execution of security-critical actions (e.g., the
door remains unlocked, and the security system is not armed). In
the second rule, no trigger event occurs because the motion sensor
stays active, ignoring all subsequent motion events. Consequently,
the rule is not executed, leaving the home vulnerable to burglary.
Modifying Motion Sensitivity: The “Motion Sensitivity” in Ta-
ble 2 is a manufacturer-specific attribute in the Occupancy Sensing
cluster on the Philips Hue Motion Sensor, which affects detection
results. Specifically, it has three different sensitivity levels (i.e., Low,
Medium, and High) with a default value of “High”. The detection
distance at a normal walking pace varies based on the sensitivity
level: 1) Low: 80 centimeters; 2) High: 200 centimeters. By changing
the sensitivity level from “High” to “Low”, the detection distance
is shortened by more than half, which allows a burglar to avoid
being detected. As detailed in Table 4, an undetected motion event
prevents the execution of the rule, and the alarm will not sound.

Tampering Reporting Interval: In addition to hidden attributes,
Zigbee sensors have configurable parameters such as “Minimum
Reporting Interval” and “Maximum Reporting Interval” that are
neither visible nor accessible to users. Attackers can exploit these
hidden 16-bit parameters to alter reporting behavior using “Config-
ure Reporting” commands. The first parameter sets the minimum
interval between consecutive reporting events. If set to 10, the at-
tribute cannot be reported again within 10 seconds of the last event.
The second one defines the maximum interval. If set to 60, the
sensor must report the attribute to the Zigbee coordinator within
60 seconds, even if no changes occur. If the “Maximum Reporting
Interval” is set to 0xffff, the sensor stops reporting that attribute,
effectively losing the ability to sense it.

In Table 4, setting the “MaximumReporting Interval” to 0xffff pre-
vents the SmartThingsMultipurpose Sensor (GP-U999SJVLAAA) [17]
from reporting vibration, allowing a burglar to bypass automation
and move a safe undetected.

The SmartThings Arrival Sensor (F-ARR-US-2) [12] reports the
“PresentValue” every minute. If not received within 100 seconds, the
coordinator marks the sensor as inactive. By setting the “Minimum
Reporting Interval” to over 100 seconds or the “MaximumReporting
Interval” to 0xffff, the sensor fails to report in time, triggering
the automation in Table 4 to turn off outlets (which may connect
to important electronic devices) and lights, causing safety issues,
especially for the elderly at night.

The SmartThings Motion Sensor (GP-U999SJVLBAA) [16] de-
tects motion and measures temperature. Setting the “Maximum
Reporting Interval” to 0xffff stops temperature reports, preventing
temperature-related automation from triggering, which can lead to
hazards in environments requiring stable temperatures, such as a
baby room, as shown in Table 4.

6.4 Z-Wave/Wi-Fi Device Hidden Attributes

Hidden attributes are not exclusive to Zigbee devices and also
exist on Z-Wave and Wi-Fi devices. Here, we explore the hidden
attributes of several Z-Wave and Wi-Fi devices on the SmartThings
platform for demonstration purposes.
Z-WaveDevices. We explore the hidden attributes of three Z-Wave
devices: Zooz 4-in-1 Motion Sensor (ZSE40), Aeotec MultiSensor 6

Discovering and Exploiting IoT Device Hidden Attributes:
A New Vulnerability in Smart Homes CCS ’25, October 13–17, 2025, Taipei, Taiwan

Table 5: Z-Wave device hidden attributes on SmartThings.
Attribute Description

Zooz
4-in-1

M
otion

Temperature Scale Current temperature unit: Fahrenheit or Celsius
Temperature Reporting
Threshold Temperature change to be reported in degrees

Humidity Reporting
Threshold Humidity change to be reported in percentages

Brightness Reporting
Threshold Brightness change to be reported in percentages

Motion Re-trigger
Interval

Time interval of motion being reported again after
the initial trigger

Motion Sensitivity Different levels of motion sensitivity
LED Indicator Mode LED mode to indicate motion/temperature events

A
eotec

M
ultiSensor

6

Low Battery Threshold Threshold to indicate that battery level is low
Temperature Threshold
Unit Temperature unit used for temperature threshold

Temperature Change
Threshold Temperature change to be reported in degrees

Humidity Change
Threshold Humidity change to be reported in percentages

Luminance Change
Threshold Luminance change to be reported in lux

Battery Level Threshold Battery change to be reported in percentages
Ultraviolet Change
Threshold Ultraviolet change to be reported

A
eotec

Siren

Send Notifications to
Associated Devices

Signal other associated devices within the
association group when alarm sounds

Partner ID Manufacturer name

Lock Configuration Binary-valued attribute to indicate whether the
configuration can be changed

Reset to Factory
Default Setting Different operations during reset

(ZW100-A), and Aeotec Siren Gen5 (ZW080-A17). Table 5 lists the
hidden attributes of these devices. Some hidden attributes define
thresholds for reporting changes in measurements like tempera-
ture, humidity, brightness/luminance, battery level, and ultraviolet.
These attributes could be exploited by attackers. For example, an
attacker could set the threshold to a minimum value (e.g., 1% for
humidity), causing the device to report every minor environmen-
tal change, which would quickly drain the battery. Alternatively,
setting the threshold to a maximum value (e.g., 50% for humidity)
could prevent the device from reporting any measurements, even if
the environment changes significantly, leading to suppressed events
and malfunctioning automation rules. The Zooz 4-in-1 Motion Sen-
sor supports several levels of sensitivity and re-trigger intervals,
which are not configurable on the SmartThings platform. These
attributes can be exploited similarly to the Philips Hue Motion Sen-
sor (Table 4). Additionally, the “Lock Configuration” attribute can
be toggled between “Disabled” and “Enabled” to control whether
the configuration can be modified. The “Reset to Factory Default
Setting” offers three options: 1) Normal operation; 2) Reset all con-
figuration parameters to default settings; and 3) Reset the product
to factory settings and exclude it from the Z-Wave network.
Wi-Fi Devices. Both Wemo and Sonos have Wi-Fi devices sup-
ported on the SmartThings platform via edge drivers. We explore
the hidden attributes of a Wemo Mini Smart Plug (F7C063) [20] and
a Sonos One Gen2 Speaker (ONEG2US1BLK) [19]. Existing edge
drivers for these two devices support only basic functions, but the
devices themselves support additional attributes listed in Table 6.
The hidden attributes of the Wemo plug mainly provide device
information, such as MAC, serial number, firmware version, and
port number, which are not available on the SmartThings platform.
For the Sonos One Speaker, the hidden attributes are related to

Table 6: Wi-Fi device hidden attributes on SmartThings.
Attribute Description

W
em

o
M
ini

GetNetworkList Retrieve a list of nearby Wi-Fi networks
GetHomeId Retrieve the Home ID

GetMacAddr Retrieve MAC address, Serial Number, and Plugin
UDN (Unique Device Name)

ChangeFriendlyName Change device name

GetMetaInfo Retrieve meta information of device: MAC address,
serial number, device type, firmware version

GetDeviceInformation Retrieve device information: MAC address, port
number, firmware version, friendly name

Sonos
O
ne

lockVolumes Disable volume change
unlockVolumes Allow volume change
timeseek Go to a specific position in the current track
trackseek Go to a specific track in the current queue
queue Display all tracks in the queue
clearqueue Remove all tracks in the queue
repeat Repeat all/one/none tracks

control commands: “lockVolumes” fixes the speaker volume, “un-
lockVolumes” allows volume changes, “timeseek” sets a specific
time in the current track, “trackseek” switches to a target track by
index, and “repeat” loops over one or all tracks.

6.5 Evaluation Summary
All attack consequences listed in Table 3 and Table 4 are success-
fully verified and are consistent with the physically observed results.
From the experiments, we confirm that the hidden attributes
are ubiquitous and exist on all the Zigbee, Z-Wave and Wi-Fi
devices that we tested. Many of these attributes are identified on
safety-critical devices, such as locks and motion sensors, and can
be exploited by attackers to incur severe risks. A comprehensive
summary of the experimental results across different IoT devices,
platforms, and communication protocols, focusing on hidden and
observable attributes, is presented in Table 10. Platform-wise, Ama-
zon Alexa is more susceptible to hidden attributes compared to
the SmartThings platform. This is because: 1) The Amazon Alexa
platform provides only basic support for IoT devices, lacking many
key attributes. 2) The SmartThings platform open-sources its edge
driver codes and hosts a community forum, encouraging devel-
oper participation and contributions. This leads to more frequent
updates and improvements in integration through edge drivers.

6.6 Generality of the Hidden Attribute Problem
The hidden attribute problem exists in multiple IoT platforms and
protocols. While our evaluation primarily focuses on two popular
commercial platforms, SmartThings and Alexa, the same principles
of discovering hidden device attributes and/or inadequate oversight
in device drivers are broadly applicable to other IoT home automa-
tion frameworks such as Google Home and Apple HomeKit. These
two platforms define standardized sets of attributes for each device
type, i.e., Google Home traits [40] and Apple HomeKit characteris-
tics [32], which may not include some attributes supported by IoT
devices, making them hidden from the platforms. For example, we
find that the attribute “clearqueue” of Sonos One is hidden on both
Google Home and Apple HomeKit. While our experiments study
Zigbee, Z-Wave, andWi-Fi, the hidden attribute issue also applies to
Bluetooth Low Energy (BLE). BLE devices expose functionality via
the Generic Attribute Profile (GATT), where data is structured into
services and characteristics. Although standardized profiles exist,
vendors frequently implement proprietary services using custom

CCS ’25, October 13–17, 2025, Taipei, Taiwan Xuening Xu, Chenglong Fu, Xiaojiang Du, and Bo Luo

Original Edge Dr iver Auto Patching Tool Patched Edge Dr iver

Dr i ver Name

Devi ce Model

Devi ce MFG

At t r i but es

Input Parameters

+

Figure 5: Automatic Patching for Edge Drivers.

UUIDs, which are often undocumented or inconsistently supported
across platforms [37]. Even in emerging protocols such as Matter,
which aim to improve interoperability through strict device models
and standardized data schemas, vendors are still allowed to define
optional or manufacturer-specific attributes. In essence, as long
as there is a separation between the IoT device functionality and
the automation platform, which is usually bridged by IoT device
drivers, the possibility of hidden attributes exists. In summary, our
findings indicate that the vulnerability widely exists in multiple IoT
platforms, IoT devices, and communication protocols.

7 Countermeasures
The hidden attribute vulnerability is widespread in IoT devices and
poses serious safety and security risks. Addressing this issue faces
several challenges. First, it is unrealistic to expect all IoT manufac-
turers to invest in hardening edge drivers, as they often prioritize
new features over security, leaving vulnerabilities unpatched for
years [33, 41, 45]. Second, it is impractical for home automation
platforms like SmartThings to resolve this alone, as obtaining com-
prehensive lists of supported attributes across thousands of devices
requires extensive collaborations with device manufacturers. Even
if home automation platforms try to solve the hidden attribute
issue, they have to go through a similar procedure as we do for
each device (i.e., obtaining all attributes and then patching edge
drivers). As of the submission of this manuscript, SmartThings and
other IoT platforms have not taken any action after we disclosed
the vulnerability to them. Third, most smart home users lack the
technical expertise to identify hidden attributes on their devices.
Automatic Patching for Edge Drivers. To address the hidden at-
tribute issue, we propose an innovative countermeasure: automatic
patching for IoT edge drivers. We develop an auto-patching tool
that takes the input of existing vulnerable edge driver code along
with the device attribute scanning results, as outlined in Section 4.
The tool identifies hidden attributes not covered by the original dri-
ver and then automatically patches the driver with additional code
and configuration files to display these attributes. The tool works
autonomously and can be easily used to address hidden attribute
issues. Besides making hidden attributes visible and configurable
in smartphone apps, the tool can also monitor changes in hidden
attributes and notify users when they are modified. In the following,
we detail the design of the automatic patching approach, which has
been implemented on the SmartThings platform.
Custom Capabilities and Presentations. In the first step, cus-
tom capability [14] and presentation [15] need to be created for
each hidden attribute. Capabilities define IoT device features on the
SmartThings platform, and presentations determine how these ca-
pabilities appear in the SmartThings app. Example codes are shown
in Figure 15. Each custom capability is assigned a unique ID in

the format namespace.capabilityName, where namespace is ran-
domly assigned by the SmartThings platform and capabilityName
is defined by the developer. Creating custom capabilities and presen-
tations is a one-time effort, acting as preparation for our proposed
module. Once created, these capabilities can be accessed by any-
one via the capability IDs in edge drivers. Therefore, users of the
auto-patching tool do not need to handle this technical aspect.
Auto-Patching Tool. The auto-patching tool contains Python
scripts that are enclosed in a shell script. The overall size is less than
200 KB. As shown in Figure 5, the inputs used for the auto-patching
tool include the original edge driver folder and four parameters: 1)
Driver Name: The name of the edge driver to be patched; 2) Device
Model: The device model the patched driver will be used for; 3)
Device MFG: The device manufacturer; and 4) Attributes: The list
of hidden attributes to be patched for the particular device. The
output is the patched edge driver that is ready for use and can be
directly installed onto the SmartThings hub.

To simplify obtaining the required parameters, we provide a list
of Driver Names and corresponding Attributes supported by the
auto-patching tool in Table 8. It is built based on the devices tested
and hidden attributes discovered in this work. We have already cre-
ated custom capabilities and presentations for the attributes listed,
so users can use them directly. The Device Model and Device MFG
can be easily found in the SmartThings Advanced Web App [8].

The auto-patching tool is easy to use and effective. With basic
inputs (i.e., the original edge driver and parameters), users only
need to run a one-line command to generate the patched edge driver,
which can be directly installed on the home automation platform
(e.g., SmartThings). The patched attributes then become visible
and configurable on the platform. For example, to patch an edge
driver named zigbee-lock for the Yale Door Lock (Model: YRD226
TSDB, MFG: Yale) with attributes (Language, AutoRelockTime), a
user simply runs ./auto_patch.sh zigbee-lock "YRD226 TSDB"
Yale Language:AutoRelockTime, where attributes are separated
by “:”. Alternatively, specifying “ALL” for the attribute field patches
all supported attributes associated with the edge drivers, as listed
in Table 8. Once the patched driver is installed on a SmartThings
hub, the patched attributes are displayed in the SmartThings app
and can be controlled by the user, as shown in Figure 9.
Monitoring Patched Attributes. After installing the patched
driver, previously hidden attributes become visible/accessible in
the SmartThings app, appearing as capability names on the UI that
can be easily mapped to the patched attributes by users. We fur-
ther improve it by enabling automatic notification upon changes
to safety-critical attributes. For this purpose, we define the “Au-
tomation View” [13] in the presentations during custom capability
creation, making them configurable in automation routines. These
attributes are then set as triggers in automation routines. For ex-
ample, routine “Send a text message to the user if AutoRelockTime
is equal to or above 30 seconds” is triggered when the value of
AutoRelockTime exceeds 30 seconds. The user will receive a text
notification, as shown in Figure 16.
Countermeasures from Different Parties. Different parties
within a smart home IoT ecosystem could address the hidden at-
tribute issue using the auto-patching tool. 1) End Users: End users
own the physical devices and can scan them to identify attributes,
then use the auto-patching tool to address any hidden attributes.

Discovering and Exploiting IoT Device Hidden Attributes:
A New Vulnerability in Smart Homes CCS ’25, October 13–17, 2025, Taipei, Taiwan

However, this approach has a drawback as users may lack the tech-
nical expertise to run shell scripts. 2) Platform Owners: Platform
owners maintain edge drivers and can gather feedback from forums
and users about missing device attributes. They can then use the
auto-patching tool to fix these gaps, update, and publish the revised
edge drivers. 3) Device Manufacturers: Device manufacturers, with
full knowledge of their devices’ supported attributes, can either use
the auto-patching tool to correct edge drivers or provide a com-
plete attribute list to platform owners. In this way, the platform
owners can use the auto-patching tool to patch missing attributes
for devices from the particular device manufacturer. 4) Edge Driver
Developers: Edge driver developers, who typically need the device
on hand for testing, can first scan for all device attributes and then
use the auto-patching tool to add any missing attributes to the
edge driver. 5) Protocol Level: Protocols can be enhanced to prevent
hidden attribute attacks by adopting application-level encryption
for sensitive clusters, avoiding global keys, and disabling insecure
joins/rejoins. Moreover, IEEE 802.15.4 MAC layer encryption is cru-
cial for securing the MAC layer header information, but it comes
at the cost of significantly reducing the battery life of IoT devices.

For other home automation platforms that do not allow users to
access edge drivers’ code (e.g., Amazon Alexa), smart home users
or third parties cannot directly leverage our auto-patching tool to
address the hidden attribute issue. However, the home automation
platforms (e.g., Amazon Alexa) have access to the edge drivers’ code,
and they can use our auto-patching tool to identify and resolve
the hidden attribute issue. Additionally, they can host some crowd-
sourcing platforms and encourage skilled users or third parties to
scan their devices and share their results. This collaborative effort
would enable platforms to compile comprehensive lists of supported
attributes, facilitating the effective use of the auto-patching tool.

8 Lessons Learned
The hidden attribute attack has the potential to impact a significant
number of users and devices. Through this work, we aim to stimu-
late awareness, promote security best practices, and thus further
enhance the security of the IoT world. To further elaborate on the
lessons learned from this research, here we discuss and answer
two questions: (1) What are the factors (vulnerabilities and security
issues) that collectively caused this dangerous yet stealthy attack? (2)
What cybersecurity best practices should be adopted to prevent such
issues in the future?

8.1 Vulnerabilities and Security Issues
The hidden attribute attack is caused by several inherent system
vulnerabilities across different aspects, as articulated below:
1) Insecure Join/Re-join [Protocol]. The Zigbee protocol has
recommended secure join/re-join procedures, unfortunately, the se-
cure join/re-join is not mandatory. To support legacy devices, many
Zigbee networks still allow devices to join with weak/no authenti-
cation during commissioning using the well-known default link key
(ZigbeeAlliance09 [24]), which makes it easy for a malicious device
to join a Zigbee network and then obtain the network key, which
is protected by the default link key during the key distribution.
2) Trust Assumption [Network and Protocol]. Devices in the
same Zigbee network are designed to communicate with each other

to enable home automation functions. A Zigbee network inher-
ently assumes that all devices within the network are trustworthy,
so there is no access control at the network layer of the protocol
when one device accesses another in the same Zigbee network. A
malicious device in the Zigbee network could eavesdrop on com-
munications and access legitimate Zigbee devices.
3) Lack of Endpoint Authentication and Access Control [End-
point]. The current Zigbee network does not provide sufficient
authentication and fine-grained access control mechanisms for ven-
dors to protect their devices/attributes from malicious network
activities. Vendors also inherit the above trust assumption and
thus do not implement any security control (authentication, access
control, intrusion detection) in their network APIs. As a result,
sensitive and security-critical attributes are exposed without any
protection, enabling unauthorized modifications by any device in
the network. Another popular home IoT protocol, Z-Wave [22],
defined three security levels and enforced isolation based on the
security levels. Note that the Z-Wave coarse-grained access con-
trol mechanism only prevents cross-security-level manipulation of
hidden attributes. Devices at the same level could still attack each
other, since they are implicitly “trusted” at the same security level.
4) Loose Protocol [Protocol]. Device behaviors and attributes are
not well defined in the Zigbee protocol. Therefore, device vendors
could implement new attributes, which are not defined in the ZCL
and could be hidden attributes. To make it worse, the Zigbee proto-
col does not require a home hub to provide support for all the Zigbee
mandatory device attributes, including security-critical attributes.
A home hub often serves as the only channel for users to interact
with the devices, therefore, when an attribute is not supported in
the home hub, it becomes a vulnerable hidden attribute.
5) Inherent Risks of Abstraction [Software Security]. Abstrac-
tion, while simplifying complexity, inherently obscures internal
states. This phenomenon was observed in vulnerabilities like Heart-
bleed [38], where hidden implementation details lead to exploita-
tion. In IoT ecosystems, edge drivers act as abstraction layers that
translate device-specific functionalities into platform-compatible
interfaces. However, incomplete mappings leave critical attributes
hidden, which could be exploited by attackers. This issue is ex-
acerbated by the loose protocol definitions in Zigbee, where ven-
dors may implement manufacturer-specific attributes. For example,
security-critical attributes like AutoRelockTime or MotionSensitivity
are often omitted from platform integrations, even though they are
implemented and used internally by the devices.
6) Lack of User Alert [UI/UX].When device attributes, including
security-critical attributes, are modified, the current Zigbee system
does not mandate a notification mechanism to alert the user of the
change, which makes the attack stealthy. In fact, for the Zigbee
devices we tested, none alert the user when a device attribute is
modified by another channel, e.g., by another device in the network.

8.2 Mitigation and Defense
The above vulnerabilities and questionable designs in various as-
pects collectively made the hidden attribute attack feasible, stealthy,
and applicable to many IoT devices regardless of their vendors. We
argue that the security of all aspects should be enhanced.

CCS ’25, October 13–17, 2025, Taipei, Taiwan Xuening Xu, Chenglong Fu, Xiaojiang Du, and Bo Luo

Transparency and Disclosure. From a secure software engineer-
ing perspective, a generalized solution starts with mandatory at-
tribute disclosure during device certification, enforced through pro-
tocol extensions (e.g., ZCL) or compliance frameworks (e.g., Matter).
While Matter represents a promising step toward unifying device
standards and improving visibility, it still permits vendor-specific
extensions that may bypass standardized controls, leaving room
for hidden attributes. Platforms should further adopt transparency-
by-design principles, logging all attributes even if not user-facing.
These measures will have challenges due to the fragmented IoT
ecosystem, where diverse manufacturers resist standardization, and
economic incentives prioritize rapid development over comprehen-
sive security practices. Addressing these issues requires striking a
balance between usability and transparency.
Security in Software Development. The reliance on obscurity
as a security mechanism in software development has repeatedly
failed in traditional contexts, as seen in exploits of proprietary
software where attackers reverse-engineer hidden logic. In IoT, the
assumption that invisible attributes are inherently secure creates
a false sense of safety. A proactive defense involves adopting an
assume-breach mindset, treating all attributes as potential attack
surfaces. Automated auditing tools, such as the one we presented
in Section 7, could be integrated into development pipelines to flag
unmapped attributes during driver development. However, billions
of legacy devices lacking updatable firmware remain vulnerable,
and continuous auditing may strain resource-constrained devices.
This highlights the need for security-by-default designs.
Principle of Least Privilege in Attribute Access. The principle
of least privilege, a cornerstone of traditional security, is neglected
in IoT attribute management. Implementing attribute-level access
control could restrict modifications to safety-critical attributes by
requiring cryptographic user consent or device-level authentica-
tion. To enhance accountability, platforms could log all attribute
changes for security monitoring and forensic analysis. However,
strict controls may degrade usability, as users could resist frequent
authentication prompts. Additionally, interoperability challenges
may arise when platforms enforce conflicting policies. Balancing se-
curity and convenience thus calls for adaptive frameworks, such as
access tiers (e.g., “basic” vs. “critical”), that accommodate different
types of devices and attributes.
Protocol-level Defense Mechanisms. Encryption and authen-
tication, foundational to secure communication in traditional sys-
tems, are inconsistently applied in IoT protocols. Zigbee’s reliance
on a single network key enables attackers to decrypt traffic after
infiltration. The trust assumption at the network level allows at-
tackers to eavesdrop and manipulate attributes once inside the net-
work. A robust solution may adopt per-cluster encryption, protect-
ing sensitive functionalities (e.g., Door Lock clusters) with unique
keys. Secure commissioning practices, such as pre-provisioning
device-unique keys at manufacture, could replace the default keys.
Yet, backward compatibility with legacy devices and resource con-
straints (e.g., battery-powered sensors) complicate the adoption.
Protocol designers should prioritize forward-compatible security
by embedding upgrade paths for cryptographic agility, while man-
ufacturers phase out insecure legacy practices.
Security in All Design and Development Aspects. The lack of
user alerts in IoT systems, where attribute changes go unnoticed,

highlights the importance of user-centric security. Future platforms
should enforce real-time notifications for modifications of critical at-
tributes, akin to intrusion detection systems in enterprise networks.
Cross-disciplinary collaboration is also critical: device manufactur-
ers, protocol standards bodies, and platform owners should align
incentives to prioritize transparency. Regulators could mandate at-
tribute transparency reports, while academia develops open-source
tools for community-driven audits. By fostering a culture of proac-
tive scrutiny, the hidden vulnerabilities can be transformed from
systemic weaknesses into managed risks.

9 Related Work
This section reviews the literature on vulnerability discovery and
attacks in Zigbee networks. Several studies evaluate the security
of the Zigbee protocol design. Zigator [29] develops a penetration
testing tool for Zigbee networks, assessing interactions against
passive and proactive attacks such as sniffing, injection, and jam-
ming. Z3Sec [53] examines the security of the touchlink commis-
sioning procedure, exposing an insecure design that enables de-
vice impersonation attacks. Snout [52] is a network mapping and
penetration testing tool for automatic wireless exploitations, in-
cluding device enumeration, vulnerability assessment, and packet
sniffing/replay/spoofing. Wang et al. [63] analyze the key leakage
problem caused by the insecure Zigbee network key distribution.
Verejoin [62] highlights vulnerabilities in Zigbee’s device rejoining
procedure, which can result in connection hijacking and impact
numerous devices. Tamarin [49] explores the formal verification of
the Zigbee protocol stack. ZLeaks [58] introduces a tool to passively
identify devices and events from encrypted Zigbee traffic based on
device reporting patterns and intervals.

Some existing works examine vulnerabilities in the implementa-
tion of Zigbee devices. Z-Fuzzer [56] employs fuzzing to find new
vulnerabilities caused by improper input validation. [3] provides a
security testing tool for developers to evaluate the software imple-
mentation of their own devices. A Zigbee chain reaction is created
in [57] by exploiting the vulnerabilities in the Zigbee Light Link
protocol, potentially resulting in a city-wide blackout or a massive
DDoS by exploiting the compromised devices. A recent work [64]
demonstrates an attack without knowing Zigbee encryption keys
and shows that Zigbee devices can be put into an abnormal status
by attacking Zigbee packets with delicately crafted payloads. Re-
mote Attention attack [61] provides the possibility of reconfiguring
and disconnecting IoT sensors from the network.

Denial of Service (DoS) attacks can target Zigbee networks. A
Low-Rate DoS (LDoS) attack [54] exploits Zigbee’s routed trans-
mission and throttles the packet rate to 0%. Energy depletion at-
tacks (EDAs) are also applicable to Zigbee networks [30, 34]. In
HiveGuard [30], an external attacker depletes the energy of battery-
powered commercial Zigbee devices in less than 16 hours by in-
terfering with the transmission of Data Requests to send crafted
acknowledgments. Ghost-in-ZigBee [34] examines vulnerabilities
in the IEEE 802.15.4 security suites that can be exploited in energy
depletion attacks, leading to denial of service and replay attacks.

Unlike the existing studies on the security of IoT protocol de-
sign and implementation, our work identifies a new vulnerability
caused by discrepancies between IoT devices and home automation

Discovering and Exploiting IoT Device Hidden Attributes:
A New Vulnerability in Smart Homes CCS ’25, October 13–17, 2025, Taipei, Taiwan

platforms, a serious issue that has long been unnoticed by both IoT
device manufacturers and platforms.

10 Conclusion
In this work, we revealed a new vulnerability – the hidden attribute
issue – which is inherent in most home automation platforms and
is ubiquitous in IoT devices with different wireless technologies
(Zigbee, Z-Wave, and Wi-Fi). We systematically analyzed the root
causes of this issue and developed an effective method for discover-
ing hidden attributes in commercial smart home IoT devices. We
conducted experiments on over 30 commercial smart home IoT
devices of different types from 16 manufacturers and discovered
a total of 119 hidden attributes. We presented a new attack – the
hidden attribute attack – which exploits the vulnerability to modify
hidden attribute values without being noticed by users, potentially
leading to severe security and safety risks, such as burglary or fire.
We responsibly disclosed the risks to several major IoT manufac-
turers and received acknowledgments. We hope this work raises
awareness in the community to strengthen the security of widely
used smart home IoT devices. In future work, we plan to extend
our experiments to more Z-Wave and Wi-Fi devices.

Acknowledgments
This work was supported in part by NSF under grants CNS-2204785,
CNS-2205868, 2409212, IIS-2014552, and DGE-1565570. Additional
support was provided by the Ripple University Blockchain Research
Initiative and the University of North Carolina System Research
Opportunities Initiative.

References
[1] 2023. achingbrain-ssdp. https://github.com/achingbrain/ssdp. (Accessed on

01/24/2024).
[2] 2023. Addressing. https://www.digi.com/resources/documentation/Digidocs/90

002002/Concepts/c_zb_addressing.htm. (Accessed on 02/03/2023).
[3] 2023. Beyond Security - ZigBee. https://www.beyondsecurity.com/dynamic-

fuzzing-testing-zigbee?cn-reloaded=1. (Accessed on 02/06/2023).
[4] 2023. codingjoe-ssdp. https://github.com/codingjoe/ssdp. (Accessed on

01/24/2024).
[5] 2023. Frient Smart Siren. https://frient.com/products/smart-siren/. (Accessed on

10/15/2023).
[6] 2023. Kwikset 914 Smart Lock. https://www.amazon.com/Kwikset-SmartCode-

Electronic-Featuring-Technology/dp/B08XNYSNT7?th=1. (Accessed on
10/15/2023).

[7] 2023. Manufacturer-specific attribute. https://github.com/Koenkk/zigbee-
herdsman-converters/blob/master/devices/philips.js#L1919. (Accessed on
01/26/2023).

[8] 2023. New SmartThings Advanced Web App. https://my.smartthings.com/.
(Accessed on 01/05/2024).

[9] 2023. Nordic nRF52840DK. https://www.nordicsemi.com/Products/Development-
hardware/nrf52840-dk. (Accessed on 01/26/2023).

[10] 2023. PAN ID. https://www.digi.com/resources/documentation/Digidocs/900020
02/Concepts/c_zb_pan_id.htm. (Accessed on 02/03/2023).

[11] 2023. Philips Hue Motion Sensor. https://www.philips-hue.com/en-us/p/hue-
motion-sensor/046677570972?origin=71700000112071407&gclid=CjwKCAjw-
KipBhBtEiwAWjgwrNYNPZMt3VQZ4_SQj7fCd2g5QSH_qNBHNE0DfRGA1
hJ8jaBYAQZL3xoCMkQQAvD_BwE&gclsrc=aw.ds#overview. (Accessed on
10/15/2023).

[12] 2023. SmartThings Arrival Sensor. https://www.amazon.com/Samsung-
SmartThings-F-ARR-US-2-Arrival-Sensor/dp/B00GM7V8I8. (Accessed on
10/15/2023).

[13] 2023. SmartThings Developers - Automation View. https://developer.smartthi
ngs.com/docs/devices/capabilities/capability-presentations#automation-view.
(Accessed on 01/04/2024).

[14] 2023. SmartThings Developers - Capabilities. https://developer.smartthings.com/
docs/devices/capabilities/. (Accessed on 01/03/2024).

[15] 2023. SmartThings Developers - Presentations. https://developer.smartthing
s.com/docs/devices/configurations-and-presentations/device-presentations.
(Accessed on 01/03/2024).

[16] 2023. SmartThings Motion Sensor. https://www.amazon.com/Samsung-
SmartThings-GP-U999SJVLBAA-Optional-Automated/dp/B07F8ZHBLS/ref=
asc_df_B07F8ZHBLS/?tag=hyprod-20&linkCode=df0&hvadid=24196739950
7&hvpos=&hvnetw=g&hvrand=15572158658243508334&hvpone=&hvptwo=&
hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9003565&hvtargid=pla-
528889063635&psc=1. (Accessed on 10/15/2023).

[17] 2023. SmartThings Multipurpose Sensor. https://www.amazon.com/Samsung-
SmartThings-Multipurpose-Sensor-GP-U999SJVLAAA/dp/B07F956F3B?th=1.
(Accessed on 10/15/2023).

[18] 2023. sonoff Zigbee 3.0 dongle. https://sonoff.tech/product/gateway-and-
sensors/sonoff-zigbee-3-0-usb-dongle-plus-p/. (Accessed on 01/26/2023).

[19] 2023. Sonos One Gen2 Speaker. https://www.bestbuy.com/site/sonos-one-gen-
2-smart-speaker-with-voice-control-built-in-black/6333557.p?skuId=6333557.
(Accessed on 01/18/2024).

[20] 2023. Wemo Mini Smart Plug. https://www.amazon.com/Smart-Enabled-Google-
Assistant-HomeKit/dp/B01NBI0A6R?th=1. (Accessed on 01/18/2024).

[21] 2023. Yale Assure Lockwith Zigbee. https://www.amazon.com/Yale-Touchscreen-
Deadbolt-YRD226HA2619-SmartThings/dp/B072LF66YX/ref=sr_1_2?crid=11
6YIX7V71LRC&keywords=YRD226-HA2-619&qid=1697385837&s=hi&sprefix
=yrd226-ha2-619%2Ctools%2C75&sr=1-2&th=1. (Accessed on 10/15/2023).

[22] 2023. Z-Wave. https://www.z-wave.com/. (Accessed on 10/17/2023).
[23] 2023. Z-Wave JS. https://github.com/zwave-js. (Accessed on 01/21/2024).
[24] 2023. ZIGBEE SECURITY: BASICS. https://research.kudelskisecurity.com/2017/1

1/08/zigbee-security-basics-part-2/#:~:text=A%20default%20global%20trust%20
center,at%20the%20time%20of%20joining. (Accessed on 02/06/2023).

[25] 2024. CR2032 Coin Cell. https://www.amazon.com/Energizer-Electronic-
Specialty-Battery-2032BP4/dp/B00D8P5T0U. (Accessed on 03/12/2024).

[26] 2024. Official Yale Lock Document. https://www.homecontrols.com/homecontr
ols/products/pdfs/YA-Yale/YAYRD256HA2x-User-Manual.pdf. (Accessed on
03/12/2024).

[27] 2024. Power Bank 50000mAh. https://www.amazon.com/Portable-Charger-
Power-Bank-50000mAh-Powerbank-Charging-External/dp/B0C147N71M.
(Accessed on 03/12/2024).

[28] 2024. Power Bank with Solar Charger. https://www.amazon.com/boogostore-
63200mAh-Portable-Flashlight-Charging/dp/B0BXSQV1JW. (Accessed on
03/12/2024).

[29] Dimitrios-Georgios Akestoridis, Madhumitha Harishankar, Michael Weber, and
Patrick Tague. 2020. Zigator: Analyzing the security of zigbee-enabled smart
homes. In Proceedings of the 13th ACM Conference on Security and Privacy in
Wireless and Mobile Networks. 77–88.

[30] Dimitrios-Georgios Akestoridis and Patrick Tague. 2021. HiveGuard: A network
security monitoring architecture for Zigbee networks. In 2021 IEEE Conference
on Communications and Network Security (CNS). IEEE, 209–217.

[31] Zigbee Alliance. 2023. Zigbee Cluster Library. https://zigbeealliance.org/wp-
content/uploads/2021/10/07-5123-08-Zigbee-Cluster-Library.pdf. (Accessed on
01/05/2023).

[32] Apple. 2025. Characteristic types. https://developer.apple.com/documentation/
homekit/characteristic-types. (Accessed on 04/03/2025).

[33] Ed Bott. 2024. The future may be passwordless, but it’s not here yet. https://ww
w.zdnet.com/article/the-future-may-be-passwordless-but-its-not-here-yet/.
(Accessed on 01/25/2024).

[34] Xianghui Cao, Devu Manikantan Shila, Yu Cheng, Zequ Yang, Yang Zhou, and
Jiming Chen. 2016. Ghost-in-zigbee: Energy depletion attack on zigbee-based
wireless networks. IEEE Internet of Things Journal 3, 5 (2016), 816–829.

[35] John Carlsen. 2023. Outfitting Your Smart Home: Zigbee Devices. https://ww
w.safewise.com/zigbee-devices/#:~:text=What%20is%20the%20range%20of,of
%20250%E2%80%93325%20feet%20indoors.&text=Without%20obstructions%2
C%20Zigbee%20frequencies%20can,by%20using%20a%20signal%20repeater.
(Accessed on 10/17/2023).

[36] Haotian Chi, Chenglong Fu, Qiang Zeng, and Xiaojiang Du. 2022. Delay wreaks
havoc on your smart home: Delay-based automation interference attacks. In 2022
IEEE Symposium on Security and Privacy (SP). IEEE, 285–302.

[37] davidgyoung. 2021. Stackoverflow - Where to find Service Data UUIDs? https:
//stackoverflow.com/a/57718856/16852539. (Accessed on 04/04/2025).

[38] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beekman,
Mathias Payer, Nicolas Weaver, David Adrian, Vern Paxson, Michael Bailey, et al.
2014. The matter of heartbleed. In Proceedings of the 2014 conference on internet
measurement conference. 475–488.

[39] Jonathan D Fuller and Benjamin W Ramsey. 2015. Rogue Z-Wave controllers: A
persistent attack channel. In 2015 IEEE 40th Local Computer Networks Conference
Workshops (LCN Workshops). IEEE, 734–741.

[40] Google. 2025. Smart Home Device Traits. https://developers.home.google.com/c
loud-to-cloud/traits. (Accessed on 04/03/2025).

[41] TatumHunter. 2021. Buggy software in off-brand smart home devices is a hacker’s
playground. https://www.washingtonpost.com/technology/2021/11/18/smart-

https://github.com/achingbrain/ssdp
https://www.digi.com/resources/documentation/Digidocs/90002002/Concepts/c_zb_addressing.htm
https://www.digi.com/resources/documentation/Digidocs/90002002/Concepts/c_zb_addressing.htm
https://www.beyondsecurity.com/dynamic-fuzzing-testing-zigbee?cn-reloaded=1
https://www.beyondsecurity.com/dynamic-fuzzing-testing-zigbee?cn-reloaded=1
https://github.com/codingjoe/ssdp
https://frient.com/products/smart-siren/
https://www.amazon.com/Kwikset-SmartCode-Electronic-Featuring-Technology/dp/B08XNYSNT7?th=1
https://www.amazon.com/Kwikset-SmartCode-Electronic-Featuring-Technology/dp/B08XNYSNT7?th=1
https://github.com/Koenkk/zigbee-herdsman-converters/blob/master/devices/philips.js#L1919
https://github.com/Koenkk/zigbee-herdsman-converters/blob/master/devices/philips.js#L1919
https://my.smartthings.com/
https://www.nordicsemi.com/Products/Development-hardware/nrf52840-dk
https://www.nordicsemi.com/Products/Development-hardware/nrf52840-dk
https://www.digi.com/resources/documentation/Digidocs/90002002/Concepts/c_zb_pan_id.htm
https://www.digi.com/resources/documentation/Digidocs/90002002/Concepts/c_zb_pan_id.htm
https://www.philips-hue.com/en-us/p/hue-motion-sensor/046677570972?origin=71700000112071407&gclid=CjwKCAjw-KipBhBtEiwAWjgwrNYNPZMt3VQZ4_SQj7fCd2g5QSH_qNBHNE0DfRGA1hJ8jaBYAQZL3xoCMkQQAvD_BwE&gclsrc=aw.ds#overview
https://www.philips-hue.com/en-us/p/hue-motion-sensor/046677570972?origin=71700000112071407&gclid=CjwKCAjw-KipBhBtEiwAWjgwrNYNPZMt3VQZ4_SQj7fCd2g5QSH_qNBHNE0DfRGA1hJ8jaBYAQZL3xoCMkQQAvD_BwE&gclsrc=aw.ds#overview
https://www.philips-hue.com/en-us/p/hue-motion-sensor/046677570972?origin=71700000112071407&gclid=CjwKCAjw-KipBhBtEiwAWjgwrNYNPZMt3VQZ4_SQj7fCd2g5QSH_qNBHNE0DfRGA1hJ8jaBYAQZL3xoCMkQQAvD_BwE&gclsrc=aw.ds#overview
https://www.philips-hue.com/en-us/p/hue-motion-sensor/046677570972?origin=71700000112071407&gclid=CjwKCAjw-KipBhBtEiwAWjgwrNYNPZMt3VQZ4_SQj7fCd2g5QSH_qNBHNE0DfRGA1hJ8jaBYAQZL3xoCMkQQAvD_BwE&gclsrc=aw.ds#overview
https://www.amazon.com/Samsung-SmartThings-F-ARR-US-2-Arrival-Sensor/dp/B00GM7V8I8
https://www.amazon.com/Samsung-SmartThings-F-ARR-US-2-Arrival-Sensor/dp/B00GM7V8I8
https://developer.smartthings.com/docs/devices/capabilities/capability-presentations#automation-view
https://developer.smartthings.com/docs/devices/capabilities/capability-presentations#automation-view
https://developer.smartthings.com/docs/devices/capabilities/
https://developer.smartthings.com/docs/devices/capabilities/
https://developer.smartthings.com/docs/devices/configurations-and-presentations/device-presentations
https://developer.smartthings.com/docs/devices/configurations-and-presentations/device-presentations
https://www.amazon.com/Samsung-SmartThings-GP-U999SJVLBAA-Optional-Automated/dp/B07F8ZHBLS/ref=asc_df_B07F8ZHBLS/?tag=hyprod-20&linkCode=df0&hvadid=241967399507&hvpos=&hvnetw=g&hvrand=15572158658243508334&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9003565&hvtargid=pla-528889063635&psc=1
https://www.amazon.com/Samsung-SmartThings-GP-U999SJVLBAA-Optional-Automated/dp/B07F8ZHBLS/ref=asc_df_B07F8ZHBLS/?tag=hyprod-20&linkCode=df0&hvadid=241967399507&hvpos=&hvnetw=g&hvrand=15572158658243508334&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9003565&hvtargid=pla-528889063635&psc=1
https://www.amazon.com/Samsung-SmartThings-GP-U999SJVLBAA-Optional-Automated/dp/B07F8ZHBLS/ref=asc_df_B07F8ZHBLS/?tag=hyprod-20&linkCode=df0&hvadid=241967399507&hvpos=&hvnetw=g&hvrand=15572158658243508334&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9003565&hvtargid=pla-528889063635&psc=1
https://www.amazon.com/Samsung-SmartThings-GP-U999SJVLBAA-Optional-Automated/dp/B07F8ZHBLS/ref=asc_df_B07F8ZHBLS/?tag=hyprod-20&linkCode=df0&hvadid=241967399507&hvpos=&hvnetw=g&hvrand=15572158658243508334&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9003565&hvtargid=pla-528889063635&psc=1
https://www.amazon.com/Samsung-SmartThings-GP-U999SJVLBAA-Optional-Automated/dp/B07F8ZHBLS/ref=asc_df_B07F8ZHBLS/?tag=hyprod-20&linkCode=df0&hvadid=241967399507&hvpos=&hvnetw=g&hvrand=15572158658243508334&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9003565&hvtargid=pla-528889063635&psc=1
https://www.amazon.com/Samsung-SmartThings-GP-U999SJVLBAA-Optional-Automated/dp/B07F8ZHBLS/ref=asc_df_B07F8ZHBLS/?tag=hyprod-20&linkCode=df0&hvadid=241967399507&hvpos=&hvnetw=g&hvrand=15572158658243508334&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9003565&hvtargid=pla-528889063635&psc=1
https://www.amazon.com/Samsung-SmartThings-Multipurpose-Sensor-GP-U999SJVLAAA/dp/B07F956F3B?th=1
https://www.amazon.com/Samsung-SmartThings-Multipurpose-Sensor-GP-U999SJVLAAA/dp/B07F956F3B?th=1
https://sonoff.tech/product/gateway-and-sensors/sonoff-zigbee-3-0-usb-dongle-plus-p/
https://sonoff.tech/product/gateway-and-sensors/sonoff-zigbee-3-0-usb-dongle-plus-p/
https://www.bestbuy.com/site/sonos-one-gen-2-smart-speaker-with-voice-control-built-in-black/6333557.p?skuId=6333557
https://www.bestbuy.com/site/sonos-one-gen-2-smart-speaker-with-voice-control-built-in-black/6333557.p?skuId=6333557
https://www.amazon.com/Smart-Enabled-Google-Assistant-HomeKit/dp/B01NBI0A6R?th=1
https://www.amazon.com/Smart-Enabled-Google-Assistant-HomeKit/dp/B01NBI0A6R?th=1
https://www.amazon.com/Yale-Touchscreen-Deadbolt-YRD226HA2619-SmartThings/dp/B072LF66YX/ref=sr_1_2?crid=116YIX7V71LRC&keywords=YRD226-HA2-619&qid=1697385837&s=hi&sprefix=yrd226-ha2-619%2Ctools%2C75&sr=1-2&th=1
https://www.amazon.com/Yale-Touchscreen-Deadbolt-YRD226HA2619-SmartThings/dp/B072LF66YX/ref=sr_1_2?crid=116YIX7V71LRC&keywords=YRD226-HA2-619&qid=1697385837&s=hi&sprefix=yrd226-ha2-619%2Ctools%2C75&sr=1-2&th=1
https://www.amazon.com/Yale-Touchscreen-Deadbolt-YRD226HA2619-SmartThings/dp/B072LF66YX/ref=sr_1_2?crid=116YIX7V71LRC&keywords=YRD226-HA2-619&qid=1697385837&s=hi&sprefix=yrd226-ha2-619%2Ctools%2C75&sr=1-2&th=1
https://www.amazon.com/Yale-Touchscreen-Deadbolt-YRD226HA2619-SmartThings/dp/B072LF66YX/ref=sr_1_2?crid=116YIX7V71LRC&keywords=YRD226-HA2-619&qid=1697385837&s=hi&sprefix=yrd226-ha2-619%2Ctools%2C75&sr=1-2&th=1
https://www.z-wave.com/
https://github.com/zwave-js
https://research.kudelskisecurity.com/2017/11/08/zigbee-security-basics-part-2/#:~:text=A%20default%20global%20trust%20center,at%20the%20time%20of%20joining.
https://research.kudelskisecurity.com/2017/11/08/zigbee-security-basics-part-2/#:~:text=A%20default%20global%20trust%20center,at%20the%20time%20of%20joining.
https://research.kudelskisecurity.com/2017/11/08/zigbee-security-basics-part-2/#:~:text=A%20default%20global%20trust%20center,at%20the%20time%20of%20joining.
https://www.amazon.com/Energizer-Electronic-Specialty-Battery-2032BP4/dp/B00D8P5T0U
https://www.amazon.com/Energizer-Electronic-Specialty-Battery-2032BP4/dp/B00D8P5T0U
https://www.homecontrols.com/homecontrols/products/pdfs/YA-Yale/YAYRD256HA2x-User-Manual.pdf
https://www.homecontrols.com/homecontrols/products/pdfs/YA-Yale/YAYRD256HA2x-User-Manual.pdf
https://www.amazon.com/Portable-Charger-Power-Bank-50000mAh-Powerbank-Charging-External/dp/B0C147N71M
https://www.amazon.com/Portable-Charger-Power-Bank-50000mAh-Powerbank-Charging-External/dp/B0C147N71M
https://www.amazon.com/boogostore-63200mAh-Portable-Flashlight-Charging/dp/B0BXSQV1JW
https://www.amazon.com/boogostore-63200mAh-Portable-Flashlight-Charging/dp/B0BXSQV1JW
https://zigbeealliance.org/wp-content/uploads/2021/10/07-5123-08-Zigbee-Cluster-Library.pdf
https://zigbeealliance.org/wp-content/uploads/2021/10/07-5123-08-Zigbee-Cluster-Library.pdf
https://developer.apple.com/documentation/homekit/characteristic-types
https://developer.apple.com/documentation/homekit/characteristic-types
https://www.zdnet.com/article/the-future-may-be-passwordless-but-its-not-here-yet/
https://www.zdnet.com/article/the-future-may-be-passwordless-but-its-not-here-yet/
https://www.safewise.com/zigbee-devices/#:~:text=What%20is%20the%20range%20of,of%20250%E2%80%93325%20feet%20indoors.&text=Without%20obstructions%2C%20Zigbee%20frequencies%20can,by%20using%20a%20signal%20repeater.
https://www.safewise.com/zigbee-devices/#:~:text=What%20is%20the%20range%20of,of%20250%E2%80%93325%20feet%20indoors.&text=Without%20obstructions%2C%20Zigbee%20frequencies%20can,by%20using%20a%20signal%20repeater.
https://www.safewise.com/zigbee-devices/#:~:text=What%20is%20the%20range%20of,of%20250%E2%80%93325%20feet%20indoors.&text=Without%20obstructions%2C%20Zigbee%20frequencies%20can,by%20using%20a%20signal%20repeater.
https://www.safewise.com/zigbee-devices/#:~:text=What%20is%20the%20range%20of,of%20250%E2%80%93325%20feet%20indoors.&text=Without%20obstructions%2C%20Zigbee%20frequencies%20can,by%20using%20a%20signal%20repeater.
https://stackoverflow.com/a/57718856/16852539
https://stackoverflow.com/a/57718856/16852539
https://developers.home.google.com/cloud-to-cloud/traits
https://developers.home.google.com/cloud-to-cloud/traits
https://www.washingtonpost.com/technology/2021/11/18/smart-home-security/
https://www.washingtonpost.com/technology/2021/11/18/smart-home-security/

CCS ’25, October 13–17, 2025, Taipei, Taiwan Xuening Xu, Chenglong Fu, Xiaojiang Du, and Bo Luo

home-security/. (Accessed on 01/25/2024).
[42] Texas Instruments. 2023. CC2538 Development Kit. https://www.ti.com/tool/CC

2538DK. (Accessed on 06/19/2023).
[43] Eyal Itkin. 2020. Don’t be silly - it’s only a lightbulb. https://research.checkpoint.

com/2020/dont-be-silly-its-only-a-lightbulb/. (Accessed on 06/27/2023).
[44] Yan Jia, Bin Yuan, Luyi Xing, Dongfang Zhao, Yifan Zhang, XiaoFeng Wang,

Yijing Liu, Kaimin Zheng, Peyton Crnjak, Yuqing Zhang, et al. 2021. Who’s in
control? On security risks of disjointed IoT device management channels. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security. 1289–1305.

[45] Kevin Jones. 2018. Unpatched Home Routers and IoT Devices, A TragedyWaiting
To Happen. https://www.hackercombat.com/unpatched-home-routers-and-iot-
devices-a-tragedy-waiting-to-happen/. (Accessed on 01/25/2024).

[46] Koenkk. [n. d.]. Zigbee2MQTT. https://www.zigbee2mqtt.io/. (Accessed on
01/05/2023).

[47] Joo Kyung-don. 2020. Over 110 mln people have downloaded Samsung’s IoT
app: exec. https://en.yna.co.kr/view/AEN20200108006700320. (Accessed on
04/12/2024).

[48] Silicon Labs. 2021. Zigbee 3.0 Device Interoperability with Legacy ZigBee Devices.
https://community.silabs.com/s/article/zigbee-3-0-device-interoperability-
with-legacy-zigbee-devices?language=en_US. (Accessed on 04/12/2024).

[49] Li Li, Proyash Podder, and Endadul Hoque. 2020. A formal security analysis of
ZigBee (1.0 and 3.0). In Proceedings of the 7th Symposium on Hot Topics in the
Science of Security. 1–11.

[50] Jannik Lindner. 2023. Alexa Statistics: Market Report & Data. https://gitnux.org
/alexa-statistics/. (Accessed on 04/12/2024).

[51] Anna Maria Mandalari, Hamed Haddadi, Daniel J Dubois, and David Choffnes.
2023. Protected or porous: A comparative analysis of threat detection capability
of IoT safeguards. In 2023 IEEE Symposium on Security and Privacy (SP). IEEE,
3061–3078.

[52] John Mikulskis, Johannes K Becker, Stefan Gvozdenovic, and David Starobinski.
2019. Snout: an extensible IoT pen-testing tool. In Proceedings of the 2019 ACM
SIGSAC conference on computer and communications security. 2529–2531.

[53] Philipp Morgner, Stephan Mattejat, Zinaida Benenson, Christian Müller, and
Frederik Armknecht. 2017. Insecure to the touch: attacking ZigBee 3.0 via
touchlink commissioning. In Proceedings of the 10th ACM Conference on Security
and Privacy in Wireless and Mobile Networks. 230–240.

[54] Satoshi Okada, Daisuke Miyamoto, Yuji Sekiya, and Hiroshi Nakamura. 2021.
New ldos attack in zigbee network and its possible countermeasures. In 2021 IEEE
International Conference on Smart Computing (SMARTCOMP). IEEE, 246–251.

[55] Philips. 2023. New To Hue: Bluetooth Smart LED Lights. https://www.philips-
hue.com/en-us/explore-hue/blog/bluetooth-led-lights. (Accessed on 06/27/2023).

[56] Mengfei Ren, Xiaolei Ren, Huadong Feng, Jiang Ming, and Yu Lei. 2021. Z-Fuzzer:
device-agnostic fuzzing of Zigbee protocol implementation. In Proceedings of the
14th ACM Conference on Security and Privacy in Wireless and Mobile Networks.
347–358.

[57] Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin O’Flynn. 2017. IoT goes
nuclear: Creating a ZigBee chain reaction. In 2017 IEEE Symposium on Security
and Privacy (SP). IEEE, 195–212.

[58] Narmeen Shafqat, Daniel J Dubois, David Choffnes, Aaron Schulman, Dinesh
Bharadia, and Aanjhan Ranganathan. 2022. Zleaks: Passive inference attacks on
Zigbee based smart homes. In Applied Cryptography and Network Security: 20th
International Conference, ACNS 2022, Rome, Italy, June 20–23, 2022, Proceedings.
Springer, 105–125.

[59] SmartThings. 2024. SmartThings APIs. https://developer.smartthings.com/docs
/api/public. (Accessed on 08/31/2024).

[60] SmartThings. 2024. SmartThings Edge Driver. https://developer.smartthings.co
m/docs/devices/hub-connected/get-started. (Accessed on 08/31/2024).

[61] Ivan Vaccari, Enrico Cambiaso, and Maurizio Aiello. 2017. Remotely exploiting
at command attacks on zigbee networks. Security and Communication Networks
2017 (2017).

[62] Jincheng Wang, Zhuohua Li, Mingshen Sun, and John CS Lui. 2022. Zigbee’s
Network Rejoin Procedure for IoT Systems: Vulnerabilities and Implications. In
Proceedings of the 25th International Symposium on Research in Attacks, Intrusions
and Defenses. 292–307.

[63] Weicheng Wang, Fabrizio Cicala, Syed Rafiul Hussain, Elisa Bertino, and Ninghui
Li. 2020. Analyzing the attack landscape of Zigbee-enabled IoT systems and
reinstating users’ privacy. In Proceedings of the 13th ACM Conference on Security
and Privacy in Wireless and Mobile Networks. 133–143.

[64] Xian Wang and Shuang Hao. 2022. Don’t Kick Over the Beehive: Attacks and
Security Analysis on Zigbee. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security. 2857–2870.

[65] Yucy. 2023. Zigbee Range: You Must Know The Truth. https://reolink.com/blog
/zigbee-range/#:~:text=Indoors%2C%20ZigBee%20typically%20manages%20mul
tiple,reach%20to%20about%20300%20meters. (Accessed on 10/17/2023).

A The Insider Attack

A typical attack scenario involves a malicious device that is al-
ready connected to the home network, e.g., a compromised Zigbee
or Z-Wave device remotely controlled by the attacker [61], a back-
doored household device [57], or a home hub with malware [43].
For instance, some devices operate using Zigbee in conjunction
with Bluetooth. In such cases, an attacker might exploit and gain
control of the device through the Bluetooth channel [55]. Once
compromised, the device could be used as a conduit to launch re-
mote attacks from inside the home automation network, without
requiring the attacker to be within signal range.

B Implementation of the End-to-end Attack
We demonstrate the end-to-end exploitation of the hidden attribute
vulnerability using a prototype attack node built from the Nordic
nRF52840 Development Kit [9]. We modify its firmware by integrat-
ing attack logic into a standard Zigbee light switch implementation.
This allows it to alter other devices’ attributes via Write Attributes
commands while appearing as a normal wireless light switch to
both the Zigbee coordinator and the home automation platform.

Firstly, we implement the attack precursors as described in Sec-
tion 3.3, which allow the attack node to join the victim Zigbee
network. In this work, we adopt the Disconnection Attack intro-
duced in [64], which forces a Zigbee device offline and necessitates
a manual reset/pairing (a rejoin process) of the device. Specifically,
following the work of [64], we build a malicious Zigbee coordinator
using a Texas Instruments CC2538 Development Kit [42]. With
the source code shared by the authors of [64], we manipulate the
settings (i.e., MAC address, PAN ID, EPID, and routing table) of the
malicious coordinator to impersonate the benign coordinator of
the target Zigbee network and forge the data packets by fuzzing
16-bit encrypted payloads at the network layer. Then, we utilize the
malicious coordinator to send the forged packets from outside the
Zigbee network to the target Zigbee device (a Philips Hue Motion
Sensor in our demonstration) that is connected to the benign Smart-
Things hub. As a result, the target device becomes disconnected
and shows “Offline” on the SmartThings app. It must be manually
re-paired with the SmartThings hub to function properly again. For
more details on the Disconnection attack, please refer to [64]. Once
the user puts the Zigbee coordinator into pairing mode, the attack
device (the custom Zigbee switch) can be automatically added to
the Zigbee network, and the network key can be obtained using
the well-known default link key (i.e., ZigbeeAlliance09 [24]). The
above steps have been demonstrated in our experiments.

Suppose the attacker wants to conduct the hidden attribute attack
on a smart lock and he needs to wait for a Door Lock event (see
Figure 13). Since the attack node receives the network key from
the coordinator after joining the Zigbee network, it extracts the
plaintext content from the sniffed packets. In a Zigbee packet, the
attacker obtains the network address of the lock (Source: 0x0f0b)
and the endpoint number of the Door Lock cluster (Source Endpoint:
1). Figure 14 is a screenshot of theWrite Attributes command and its
response with a status code of “SUCCESS”. We successfully perform
the end-to-end hidden attribute attack on several Zigbee devices
on both the SmartThings and the Alexa platforms.

https://www.washingtonpost.com/technology/2021/11/18/smart-home-security/
https://www.ti.com/tool/CC2538DK
https://www.ti.com/tool/CC2538DK
https://research.checkpoint.com/2020/dont-be-silly-its-only-a-lightbulb/
https://research.checkpoint.com/2020/dont-be-silly-its-only-a-lightbulb/
https://www.hackercombat.com/unpatched-home-routers-and-iot-devices-a-tragedy-waiting-to-happen/
https://www.hackercombat.com/unpatched-home-routers-and-iot-devices-a-tragedy-waiting-to-happen/
https://www.zigbee2mqtt.io/
https://en.yna.co.kr/view/AEN20200108006700320
https://community.silabs.com/s/article/zigbee-3-0-device-interoperability-with-legacy-zigbee-devices?language=en_US
https://community.silabs.com/s/article/zigbee-3-0-device-interoperability-with-legacy-zigbee-devices?language=en_US
https://gitnux.org/alexa-statistics/
https://gitnux.org/alexa-statistics/
https://www.philips-hue.com/en-us/explore-hue/blog/bluetooth-led-lights
https://www.philips-hue.com/en-us/explore-hue/blog/bluetooth-led-lights
https://developer.smartthings.com/docs/api/public
https://developer.smartthings.com/docs/api/public
https://developer.smartthings.com/docs/devices/hub-connected/get-started
https://developer.smartthings.com/docs/devices/hub-connected/get-started
https://reolink.com/blog/zigbee-range/#:~:text=Indoors%2C%20ZigBee%20typically%20manages%20multiple,reach%20to%20about%20300%20meters.
https://reolink.com/blog/zigbee-range/#:~:text=Indoors%2C%20ZigBee%20typically%20manages%20multiple,reach%20to%20about%20300%20meters.
https://reolink.com/blog/zigbee-range/#:~:text=Indoors%2C%20ZigBee%20typically%20manages%20multiple,reach%20to%20about%20300%20meters.

Discovering and Exploiting IoT Device Hidden Attributes:
A New Vulnerability in Smart Homes CCS ’25, October 13–17, 2025, Taipei, Taiwan

Table 7: Battery Life Estimation for Attack Device Using
Different Power Sources. The scanning power consumption
of the attack device (nRF52840 DK) is approximately 200mW.

Power Source Capacity Volt Current Battery Life
CR2032 Coin Cell [25] 210 mAh 3 V 67 mA ∼ 3 hours
Power Bank [27] 50000 mAh 5 V 40 mA 52 days
Solar Charger Power Bank [28] > 63200 mAh 5 V 40 mA Months - Years

Figure 6: Amazon acknowledged our findings and rewarded
us with a bounty of $2,500.

Figure 7: The status of the vulnerability disclosure to Sam-
sung SmartThings is shown in the red box. Our submission
has been considered a valid issue.

Although in theory, it is possible to launch attacks by directly
sending “unlock” commands to a Zigbee lock after an attack device
joins a Zigbee network, it does not work well due to the following
reasons: 1) It does not apply to sensors that do not support control
commands; 2) It will generate events in the system log (e.g., door
unlock events), and users will be notified of them, thus it is not
stealthy. On the other hand, the hidden attribute attack in our
work can modify device attributes stealthily and can cause severe
consequences. As a result, users will neither notice the changes nor
will events be logged.

C Brute-force PIN Guessing
The proper configuration of the WrongCodeEntryLimit and User-
CodeTemporaryDisableTime attributes together makes it difficult
for attackers to guess the lock PIN, which could be 4 to 8 digits
in length. However, by setting the WrongCodeEntryLimit to the
maximum allowed value and the UserCodeTemporaryDisableTime
to the minimum allowed value, an attacker can significantly in-
crease their chance of guessing the PIN. As shown in Table 2, the
WrongCodeEntryLimit ranges from 1 to 10 for the Kwikset Smart
Lock, and the UserCodeTemporaryDisableTime can be set to a mini-
mum of 1 second, which is negligible and makes brute-force PIN
guessing much easier. Specifically, in a PIN-guessing attack against
the Kwikset Smart Lock, compared to the default settings (Wrong-
CodeEntryLimit=3, UserCodeTemporaryDisableTime=60), changing
the WrongCodeEntryLimit to the maximum value of 10 and the
UserCodeTemporaryDisableTime to the minimum value of 1 reduces
the attack time to 1/20 of the default setting.

Figure 8: Disclosure response from CSA.

D Screenshots of the Disclosure Responses
Figure 6 shows a screenshot of the email sent to us regarding the
bounty of $2,500 for our vulnerability disclosure to Amazon. Fig-
ure 7 provides information about the vulnerability disclosure to
Samsung SmartThings. Our findings have been acknowledged and
considered valid as displayed in the red box. Figure 8 shows the re-
sponse from CSA. They acknowledged our findings and suggested
some mitigations that device manufacturers should implement to
prevent and address the vulnerability described in this paper. They
have also prompted their members to update any existing devices
that may be impacted.

E Changing Hidden Attributes via Physical
Access

The user may be able to configure some hidden attributes by phys-
ically accessing (touching) the device. For instance, a smart lock
may allow the user to configure the AutoRelockTime attribute by
pressing a sequence of keys. However, we still consider these at-
tributes hidden because: 1) IoT devices are envisioned and designed
to be controlled remotely via companion apps, web/cloud interfaces,
or voice assistants, while physical interaction with the device is
typically very limited in usability. 2) The values of such attributes
are never provided to the user through any device management
channel, such as companion apps. When these attributes are adver-
sarially modified by an attacker, the change will not be displayed on
the device, so the user does not notice the change even if they have
physical access to the device. The user may find that the device is
malfunctioning but does not know the cause.

CCS ’25, October 13–17, 2025, Taipei, Taiwan Xuening Xu, Chenglong Fu, Xiaojiang Du, and Bo Luo

Figure 9: Attributes shown on the SmartThings app when a
Zigbee Yale Assure Lock connects to the SmartThings hub
using the patched edge driver with support of “Language”
and “AutoRelockTime”.

Figure 10: Three attributes within the Door Lock cluster
are returned in the Discover Attributes Response command
when the “Start Attribute Identifier” is 0x0000 and the “Max-
imum Attribute Identifiers” is 3.

(a)

(b)

Figure 11: Results of the Read Attributes commands. (a) The
attribute is supported by the target device; (b) The attribute
does not exist on the target device.

(b)

(a)

Figure 12: The new PIN code is incorporated into the code
registration event. (a) Send PIN code over the air, the PIN
code 6789 is shown as plaintext in the payload; (b) Do not
send PIN code over the air, the PIN code is masked.

Table 8: SmartThings edge drivers and attributes that can be
patched by our auto-patching tool.

SmartThings Edge Drivers Attributes

zigbee-lock

Language
AutoRelockTime
SoundVolume
OperatingMode
EnableOneTouchLocking
EnableInsideStatusLED
EnablePrivacyModeButton
WrongCodeEntryLimit
UserCodeTemporaryDisableTime

zigbee-siren MaxDuration

hue-motion PIROccupiedToUnoccupiedDelay
MotionSensitivity

zigbee-switch

IdentifyTime
DeviceEnabled
OnOffTransitionTime
OnLevel
OnTime
StartUpOnOff
StartUpColorTemperatureMireds

zigbee-dimmer-switch CheckInInterval
FastPollTimeout

zigbee-contact

IdentifyTime
DeviceEnabled
CheckInInterval
FastPollTimeout

zigbee-water-leak-sensor

IdentifyTime
DeviceEnabled
CheckInInterval
FastPollTimeout

zigbee-button

IdentifyTime
DeviceEnabled
CheckInInterval
FastPollTimeout

zigbee-motion-sensor

IdentifyTime
DeviceEnabled
CheckInInterval
FastPollTimeout

zigbee-presence-sensor
IdentifyTime
CheckInInterval
FastPollTimeout

network address of the lock

endpoint number of the Door Lock cluster

Figure 13: The sniffed smart lock event contains necessary
information to carry out the hidden attribute attack. The
content is in plaintext, decrypted using the network key.

F Other Tested Zigbee Devices
We test 26 Zigbee devices from 12 manufacturers in this work and
identify a total of 88 hidden attributes across all of them. In addition
to the devices used for the demonstration of our attack in Section 6,
the rest of the tested Zigbee devices are listed in Table 9. Most of the
hidden attributes in Table 9 are mandatory. Each device in Table 9

Discovering and Exploiting IoT Device Hidden Attributes:
A New Vulnerability in Smart Homes CCS ’25, October 13–17, 2025, Taipei, Taiwan

Table 10: Summary of attributes across different IoT devices,
platforms, and protocols. “ST”: SmartThings; “0”: Supported
Without Observable Attributes; “-”: Not Supported.

IoT Device Protocol Hidden on
Both Platforms

Observable
ST Alexa

Yale Assure Lock Zigbee 18 2 1
Kwikset Smart Lock Zigbee 14 2 1
Frient Smart Siren Zigbee 1 0 0

Philips Hue Motion Sensor Zigbee 2 3 1
Innr Smart Plug Zigbee 4 1 1

Innr Smart Light Bulb Zigbee 8 3 3
Sengled Smart Light Switch Zigbee 3 3 1
Sengled Smart Light Bulb Zigbee 3 3 3

Sengled Window/Door Sensor Gen 2 Zigbee 1 2 1
SONOFF Smart Plug Zigbee 2 1 1

ThirdReality Water Leak Sensor Zigbee 1 2 1
ThirdReality Switch Gen2 Zigbee 1 1 1
ThirdReality Switch Gen3 Zigbee 1 1 1

ThirdReality Button Zigbee 1 2 1
ThirdReality Motion Sensor Zigbee 1 2 1
ThirdReality Door Sensor Zigbee 1 2 1
SmartThings Smart Plug Zigbee 1 2 1

SmartThings Multipurpose Sensor Zigbee 3 5 1
SmartThings Arrival Sensor Zigbee 3 3 0

SmartThings Water Leak Sensor Zigbee 3 3 1
SmartThings Button Zigbee 3 3 0

SmartThings Motion Sensor Zigbee 3 3 1
Lutron Aurora Dimmer Switch Zigbee 1 0 0
IKEA Tradfri Remote Control Zigbee 3 2 0

Centralite Motion Sensor Zigbee 3 3 1
Centralite Door Sensor Zigbee 3 3 1

Zooz 4-in-1 Motion Z-Wave 7 6 -
Aeotec MultiSensor 6 Z-Wave 7 11 -

Aeotec Siren Z-Wave 4 3 -
Wemo Mini Wi-Fi 6 1 1
Sonos One Wi-Fi 7 8 0

Total 119 86 26

(a)

(b)

new attribute value

attribute ID

Figure 14: Writing a new value to the AutoRelockTime at-
tribute on a smart lock: (a) Write Attributes command; (b)
Write Attributes Response command.

{
 "name": "Auto Relock Time",
 "attributes": {
 "AutoRelockTime": { ...
 }
 },
 "commands": {
 "setAutoRelockTime": { ...
 }
 }
}

{
 "dashboard": { ... },
 "detailView": [
 {
 "label": "AutoRelockTime",
 "displayType": "slider",
 "slider": { ... }
 }
],
 "automation": { ... },
 "id": "<namespace>.autoRelockTime",
 "version": 1
}

Figure 15: Example code of capability definition (upper-left)
and presentation definition (upper-right). The capability
view in the SmartThings app is shown at the bottom.

Figure 16: A screenshot of the text message notification from
SmartThings, where 844647 is the number registered with
SmartThings.

Table 9: The rest of the Zigbee devices tested in this work,
along with the identified hidden attributes. Others are listed
in Table 2. M - Mandatory; O - Optional.

ID Device Name Cluster Hidden Attribute M/O

1 Innr Smart Plug

Basic DeviceEnabled O
Identify IdentifyTime M

Level Control OnOffTransitionTime O
OnLevel O

2 Innr Smart Light Bulb

Basic DeviceEnabled O
Identify IdentifyTime M

On/Off
OnTime O

OffWaitTime O
StartUpOnOff O

Level Control OnOffTransitionTime O
OnLevel O

Color Control StartUpColorTemper-
atureMireds M

3 Sengled Smart Light Switch
Identify IdentifyTime M

Poll Control Check-inInterval M
FastPollTimeout M

4 Sengled Smart Light Bulb
Identify IdentifyTime M

Level Control OnLevel O

Color Control StartUpColorTemper-
atureMireds M

5 Sengled Window & Door
Sensor Gen2 Identify IdentifyTime M

6 SONOFF Smart Plug Basic DeviceEnabled O
Identify IdentifyTime M

7 ThirdReality Water Leak Sensor Basic DeviceEnabled O
8 ThirdReality Switch Gen2 Identify IdentifyTime M
9 ThirdReality Switch Gen3 Basic DeviceEnabled O
10 ThirdReality Button Basic DeviceEnabled O
11 ThirdReality Motion Sensor Basic DeviceEnable O
12 ThirdReality Door Sensor Basic DeviceEnabled O
13 SmartThings Smart Plug Identify IdentifyTime M

14 SmartThings Multipurpose
Sensor (contact senor)

Identify IdentifyTime M

Poll Control Check-inInterval M
FastPollTimeout M

15 SmartThings Arrival Sensor
(presence sensor)

Identify IdentifyTime M

Poll Control Check-inInterval M
FastPollTimeout M

16 SmartThings Water Leak Sensor
Identify IdentifyTime M

Poll Control Check-inInterval M
FastPollTimeout M

17 SmartThings Button
Identify IdentifyTime M

Poll Control Check-inInterval M
FastPollTimeout M

18 SmartThings Motion Sensor
Identify IdentifyTime M

Poll Control Check-inInterval M
FastPollTimeout M

19 Lutron Aurora Dimmer Switch Identify IdentifyTime M

20 IKEA Trådfri Remote Control
Identify IdentifyTime M

Poll Control Check-inInterval M
FastPollTimeout M

21 Centralite Motion Sensor
Identify IdentifyTime M

Poll Control Check-inInterval M
FastPollTimeout M

22 Centralite Door Sensor
Identify IdentifyTime M

Poll Control Check-inInterval M
FastPollTimeout M

CCS ’25, October 13–17, 2025, Taipei, Taiwan Xuening Xu, Chenglong Fu, Xiaojiang Du, and Bo Luo

has at least one hidden attribute and several of them have multiple
hidden attributes.

	Abstract
	1 Introduction
	2 Background
	2.1 Smart Home IoT Architecture
	2.2 Edge Drivers
	2.3 The Problem Scale
	2.4 Zigbee Network and Device Hierarchy

	3 The System and Threat Models
	3.1 The System Model
	3.2 The Threat Model
	3.3 Attack Precursors

	4 Discovering Hidden Attributes
	4.1 Definition of Hidden Attributes
	4.2 Discovering Zigbee Attributes
	4.3 Discovering Z-Wave and Wi-Fi Attributes
	4.4 Manual Discovery of Hidden Attributes
	4.5 Automated Discovery of Hidden Attributes

	5 Exploiting Hidden Attributes
	5.1 Overview of the Hidden Attribute Attack
	5.2 The End-to-End Hidden Attribute Attack

	6 Evaluation
	6.1 Results of Attribute Exploration
	6.2 Observable Attributes in Apps
	6.3 Consequences of Hidden Attribute Attack
	6.4 Z-Wave/Wi-Fi Device Hidden Attributes
	6.5 Evaluation Summary
	6.6 Generality of the Hidden Attribute Problem

	7 Countermeasures
	8 Lessons Learned
	8.1 Vulnerabilities and Security Issues
	8.2 Mitigation and Defense

	9 Related Work
	10 Conclusion
	Acknowledgments
	References
	A The Insider Attack
	B Implementation of the End-to-end Attack
	C Brute-force PIN Guessing
	D Screenshots of the Disclosure Responses
	E Changing Hidden Attributes via Physical Access
	F Other Tested Zigbee Devices

