
MP-Mediator: Detecting and Handling the New Stealthy Delay
Attacks on IoT Events and Commands

Xuening Xu
Stevens Institute of Technology

Hoboken, NJ, USA
xxu64@stevens.edu

Chenglong Fu
Univ. of North Carolina at Charlotte

Charlotte, NC, USA
chenglong.fu@uncc.edu

Xiaojiang Du
Stevens Institute of Technology

Hoboken, NJ, USA
xdu16@stevens.edu

ABSTRACT
In recent years, intelligent and automated device control features
have led to a significant increase in the adoption of smart home IoT
systems. Each IoT device sends its events to (and receives commands
from) the corresponding IoT server/platform, which executes au-
tomation rules set by the user. Recent studies have shown that IoT
messages, including events and commands, are subject to stealthy
delays ranging from several seconds tominutes, or even hours, with-
out raising any alerts. Exploiting this vulnerability, adversaries can
intentionally delay crucial events (e.g., fire alarms) or commands
(e.g., locking a door), as well as alter the order of IoT messages that
dictate automation rule execution. This manipulation can deceive
IoT servers, leading to incorrect command issuance and jeopar-
dizing smart home safety. In this paper, we present MP-Mediator,
which is the first defense system that can detect and handle the new,
stealthy, and widely applicable delay attacks on IoT messages. For
IoT devices lacking accessible APIs, we propose innovative methods
leveraging virtual devices and virtual rules as a bridge for indirect
integration with MP-Mediator. Furthermore, a VPN-based compo-
nent is proposed to handle command delay attacks on critical links.
We implement and evaluate MP-Mediator in a real-world smart
home testbed with twenty-two popular IoT devices and two major
IoT automation platforms (IFTTT and Samsung SmartThings). The
experimental results show that MP-Mediator can quickly and accu-
rately detect the delay attacks on both IoT events and commands
with a precision of more than 96% and a recall of 100%, as well as
effectively handle the delay attacks.

CCS CONCEPTS
• Security and privacy→ Systems security; • Computer sys-
tems organization → Sensor networks.

KEYWORDS
IoT, security, delay attack, detection, handling

ACM Reference Format:
Xuening Xu, Chenglong Fu, and XiaojiangDu. 2023.MP-Mediator: Detecting
and Handling the New Stealthy Delay Attacks on IoT Events and Commands.
In The 26th International Symposium on Research in Attacks, Intrusions and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RAID ’23, October 16–18, 2023, Hong Kong, China
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0765-0/23/10. . . $15.00
https://doi.org/10.1145/3607199.3607225

When presence becomes inactive if front door is locked arm security system

Figure 1: An example of the delay attack: The automation
rule, “When presence becomes inactive, if the front door is
locked, then arm the security system” is maliciously disabled
by delaying the “front door is locked” event, which leaves the
security system disarmed after user’s leaving. Even if the
“front door is locked” event is received later, there is no more
“presence inactive” event to trigger the automation to arm the
security system, leaving the home unprotected.

Defenses (RAID ’23), October 16–18, 2023, Hong Kong, China. ACM, New York,
NY, USA, 17 pages. https://doi.org/10.1145/3607199.3607225

1 INTRODUCTION
The rapid development of the Internet of Things (IoT) facilitates the
popularity of smart home systems. By 2021, smart home IoT has
entered more than 43% of U.S. households [55]. In a typical smart
home, IoT devices are integrated into IoT platforms such as Sam-
sung SmartThings [14], Apple HomeKit [8], and IFTTT [9], which
provide a great convenience for home automation by executing
user-customized automation through IoT platform servers.

Despite the benefits of home automation, it also creates new
attack surfaces for adversaries. Since the execution of automation
rules is driven and fulfilled by messages between IoT devices and
servers, the IoT message/communication channels become a major
target of cyberattacks against smart home IoT systems. Recent stud-
ies [25, 35] present a new delay attack on IoT messages that can
stealthily delay IoT events and commands from dozens of seconds
to several minutes (or even hours in some cases) without triggering
any alarms, even if the IoT messages are protected by the Transport
Layer Security (TLS) protocol. Attackers can delay events and com-
mands of safety-critical devices (e.g., smoke detectors, smart locks)
or maliciously disable (or trigger) the execution of automation rules
by reversing the order of rule-relevant messages. An example of
the new delay attack is given in Figure 1.

In the recent study [35], Fu et. al, also briefly discuss some coun-
termeasures to the new delay attack, including shortening message
timeout periods and checking event timestamps. They find that
these countermeasures are either incapable of handling some at-
tack cases or require modifying the software of IoT devices and

46

https://doi.org/10.1145/3607199.3607225
https://doi.org/10.1145/3607199.3607225
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3607199.3607225&domain=pdf&date_stamp=2023-10-16

RAID ’23, October 16–18, 2023, Hong Kong, China Xuening Xu, Chenglong Fu, and Xiaojiang Du

servers. Furthermore, although this vulnerability has been reported
to major IoT vendors for more than one year, we are not aware
of any mitigation or defense against the new delay attacks on the
affected IoT devices, which include the devices from most major
IoT vendors, such as Google, Amazon, Samsung, SimpliSafe, Ring,
and Apple. The existing IoT security solutions, such as policy-based
approaches [24, 31] and anomaly detection systems [20, 21, 36, 54],
cannot address the new delay attacks (details are given in Section 7).
As a result, it is still an open question regarding how to detect and
handle the new delay attack. Without an effective defense method,
millions of smart homes are at risk.

Targeting this urgent issue, we present the Multi-Platform Me-
diator (MP-Mediator) as the first work of defense against the IoT
message delay attack. MP-Mediator decouples the direct connec-
tions between IoT devices and automation servers and evaluates
the messages being exchanged in terms of their latency of being
acknowledged. We then conduct a systematic investigation of IoT
message delay attacks in different network and device integration
scenarios, and propose customized strategies for detecting and han-
dling each of them. The core idea is as follows: MP-Mediator starts
a timer and records the time when a new IoT device event is sent
out by sniffing the wireless communication in the smart home local
network. The time is then used as the ground truth and compared
with the time when the message is acknowledged by the receiver
to detect delay attacks. After a delay attack is detected, it will be
handled by forwarding the delayed events to IoT servers or secretly
tunneling the delayed commands to target devices. The details are
given in Section 5.

To make the MP-Mediator an implementable solution, there are
some prominent challenges.
Challenge 1: Some of the IoT devices cannot be directly accessed
due to the lack of APIs, which makes IoT events or commands
non-observable to MP-Mediator (or any other security modules).
Without observing IoT events or commands, it is impossible to
detect any delay attacks on them.
Challenge 2: The delay attacks can also delay traffic between MP-
Mediator and IoT platforms without causing any alarms. It is not
easy to quickly detect a delay attack on this network link because
we do not know the exact time when an IoT platform receives an
event or sends out a command.
Challenge 3: In some cases, a command delay attack can block the
only path to an IoT device, which makes it unable to receive any
commands, even after the command delay attack has been detected.

To tackle the above challenges, we design novel virtual-device
and virtual-rule-based approaches, as well as a VPN-based method
for detecting and handling the new delay attacks on IoT messages.
A virtual device is a computer program that represents an instance
of an IoT device. A virtual rule is an automation rule that involves
virtual devices. For instance, a virtual rule, When the physical light
is turned on, turn on the virtual device Vir-Light, synchronizes the
states between the physical light and the virtual device Vir-Light.

We implement MP-Mediator in a real-world smart home testbed
with twenty-two commodity IoT devices and two popular IoT plat-
forms.We evaluateMP-Mediator on both IoT events and commands,
and the results show that MP-Mediator can detect the new delay
attacks with a precision of over 96% and a recall of 100%, and then
effectively handle the delay attacks.

Our contributions are summarized as follows:
• This is the first work that systematically studies the counter-
measures (including both detection and handling) for the
stealthy delay attacks on IoT events and commands. We cat-
egorize network links between IoT devices and IoT servers
for different connection scenarios, and we consider various
attack strategies on all the network links.

• To address Challenge 1, we propose to create virtual de-
vice for each physical IoT device in a smart home that does
not have APIs for accessing it. A virtual device is synchro-
nized with its corresponding real device through some vir-
tual rules. Virtual devices and virtual rules enable the MP-
Mediator to indirectly observe IoT devices that do not have
APIs for accessing them. Details about virtual devices and
virtual rules can be found in Section 5.2.2.

• To address Challenge 2, we propose using virtual devices
and virtual rules to create short-interval heartbeats between
MP-Mediator and IoT platforms, which enables quick detec-
tion of the delay attacks (see Section 5.2.4 and Section 5.2.5).

• To addressChallenge 3, we propose a VPN-based method to
tunnel a newly established connection such that a command
can be re-sent via the VPN tunnel without being noticed by
the attacker. Details are given in Section 5.3.1.

• We implement and evaluate MP-Mediator in a real-world
smart home testbed with 22 different IoT devices and two
popular IoT integration platforms, which shows the effec-
tiveness of MP-Mediator.

The rest of the paper is organized as follows. We describe the
background in Section 2 and discuss the attack model in Section 3.
We present the system overview in Section 4. We detail the system
design of detecting and handling the delay attacks in Section 5.
In Section 6, we evaluate the performance of our approaches. We
discuss related work in Section 7. Section 8 presents additional
discussions. Finally, we conclude this work in Section 9.

2 BACKGROUND
We give the background of smart home systems in Section 2.1, and
discuss related work of identifying devices, events, and commands
by analyzing encrypted traffic in Section 2.2. The new delay attacks
are presented in Section 2.3.

2.1 Smart Home Systems
A typical smart home contains several components as shown in
Figure 2: IoT devices, hubs, and IoT servers.
IoT Devices and Hubs. IoT devices deployed in a smart home
employ various wireless communication technologies, such as Wi-
Fi, Zigbee, and Z-Wave. Wi-Fi devices can be directly connected to a
home router, while Zigbee/Z-Wave devices require a dedicated hub
as the gateway to connect Zigbee/Z-Wave networks with the home
Wi-Fi network, converting non-IP payloads to IP-based payloads
and then forwarding them to the home Wi-Fi router.
IoT Servers. After receiving events from IoT devices, a Wi-Fi
router sends them to IoT platforms/servers, which include local
servers and cloud servers based on the location. Local IoT servers
(i.e., local platforms), such as HomeKit, run on a local device, while
cloud IoT servers are hosted on cloud servers. Further, cloud servers

47

MP-Mediator: Detecting and Handling the New Stealthy Delay Attacks on IoT Events and Commands RAID ’23, October 16–18, 2023, Hong Kong, China

Zigbee/Z-Wave
devices

Wi-Fi
devices

Hubs
Wi-Fi
router

Local
servers

Home Area
Network

Endpoint
servers

Integration
servers

Figure 2: System model of a typical smart home.

can be divided into endpoint servers and integration servers (i.e.,
integration platforms). An endpoint server is also called a vendor
cloud server that is operated by a specific IoT device vendor to
only support the interaction with its own IoT devices. An integra-
tion platform aims to integrate various IoT devices from different
vendors. Unlike endpoint servers that directly interact with their
devices or hubs, an integration platform controls devices via their
vendor cloud servers using cloud-to-cloud communications.

2.2 Analyzing Encrypted Traffic
Recent studies have shown the feasibility and effectiveness of
inferring information about a smart home by analyzing its en-
crypted traffic. Specifically, packet information, such as MAC/IP
addresses, packet lengths, DNS, etc., can be used to identify IoT
devices [29, 48, 53, 60, 61], as well as recognize device events and
commands in a real-time manner [18, 57, 62]. Furthermore, au-
tomation rules can also be inferred by analyzing a sequence of
successfully recognized events and commands [40, 45, 56, 62]. Such
inference has a high accuracy of 91% in identifying IoT devices [61]
and 97% on average in recognizing device events [57]. Besides, re-
cent work [62] achieves high precision in inferring automation
rules from the encrypted traffic. In this work, we assume attackers
can exploit the above information to infer smart home information
to launch the delay attacks. Besides, the proposed defense system
can sniff the local traffic and make use of the inferred events and
commands to detect and handle the delay attacks.

2.3 Delay Attacks on IoT Events and Commands
Recent works [25, 35] reveal a new delay attack on almost all
commercial smart home IoT devices. The new delay attack is differ-
ent from jamming attacks or other DoS and MITM attacks in the
following aspects: 1) it does not cause any alarm in any layer of
the IoT network protocol stack; 2) a delayed message is eventually
delivered (after the delay caused by the attack), so the receiver does
not see any problem. According to [35], the delay on IoT events
or commands ranges from dozens of seconds to hours, depending
on the brand/type of IoT devices and the cloud. The new delay
attack utilizes the fact that timeout detection in the TCP layer is
decoupled from data protection in the TLS layer. The attack can

Attacker

Passive
Sniffing

Normal
Event/command of interest

Stealthy
Attack

Detect
Attack

Delay the event/command of interest

Aggressive
Attack

Take actions to handle the detected delay attack

Handle
Attack

Conduct aggressive attacks

Detect
Attack

Handle
Attack

Defender

Figure 3: Interactions between the attacker and the defender.

be successfully launched without knowing the TLS session keys or
causing any TLS alerts.

Fu et al. present three types of delay attacks in [35], including the
state-update delay attack, the action delay attack, and the erroneous
execution attack. Delaying IoT event or command messages could
cause severe damage to the safety of users or property. Below are
some examples in the form of [delaying events → (could cause)
consequence]: [delaying water leak sensor events → flooding],
[delaying smoke detector events → fire], [delaying camera/contact
sensor events → home invasion undetected], [delaying carbon
monoxide sensor events→CO high/death], [delaying openwindow
command→ CO high], [delaying start water sprinkler command
→ fire]. The consequences caused by the delay attacks could be
disastrous or even fatal to the residents. Hence, it is a pressing
matter to design effective detection and handling methods for the
new delay attacks.

3 ATTACK MODEL
The goal of the attacker is to induce safety risks in the victim’s
smart home by delaying IoT events and/or commands of target IoT
devices. An attacker can eavesdrop on the traffic of a smart home.
The attacker can use a compromised device or a controlled device
(e.g., by deploying his own device nearby) to hijack TCP sessions,
and then proactively delay events and commands sent over the
hijacked TCP session. Note that the TCP hijacking attack can only
relay traffic but cannot modify payloads of network packets due to
the protection provided by TLS. In addition, Zigbee IoT devices in a
smart home may form a mesh network. Also, some homes may use
a Wi-Fi range extender. An attacker may exploit a relay node in a
mesh network or aWi-Fi range extender to launch the delay attacks.
As discussed in Section 2.2, an attacker has the capability to identify
devices and message types from encrypted traffic. This gives an
attacker the ability to delay a specific event or command on a TLS-
protected TCP session, but the attacker cannot modify the payloads.
Similar to the assumptions in IoTGuard [24], IoTSafe [31] and

48

RAID ’23, October 16–18, 2023, Hong Kong, China Xuening Xu, Chenglong Fu, and Xiaojiang Du

1

Cloud Server

First-hop
ISP routerHome

2

3

Nth-hop
ISP router

Figure 4: Three methods to launch delay attacks at three
different locations: 1○ LAN delay attack; 2○ specific-cloud
delay attack; 3○ first-hop delay attack.

ContexIoT [43], MP-Mediator itself is assumed to be secure.
Also, there are existing approaches and tools (e.g., ArpON [50],
XArp [47] and DefendARP [52]) that can protect MP-Mediator from
ARP spoofing attacks. I.e., MP-Mediator is resistant to MITM and
redirect attacks, and MP-Mediator can successfully send messages
to local devices without being affected by the delay attacks. Note
that due to the hardware and power constraint of low-cost IoT
devices, it is impractical to deploy such approaches and tools on
the IoT devices to protect them from MITM and redirect attacks.
The virtual devices proposed by us are part of the MP-Mediator
software and run on MP-Mediator. Therefore, the virtual devices
are secure and cannot be compromised by attackers.

As shown in Figure 3, an attacker can passively sniff the traffic
first. When he sniffs any event or command of interest, the attacker
intends to keep his attacks stealthy (i.e., not being detected), but
the attacker may become aggressive if he finds his attacks have
been detected (i.e., seeing the defender is taking action to handle
the attacks). Based on the location where the attacker launches
the delay attacks (Figure 4), there are three different delay attack
methods with corresponding capabilities as follows:
Method 1: LAN Delay Attack. A LAN delay attacker either com-
promises an existing IoT device in the victim’s home or deploys
a Wi-Fi device near the victim’s home, and thus has control of
the device. With the controlled device, the attacker can sniff Wi-Fi
traffic and hijack TCP sessions (e.g., the well-known ARP spoof-
ing attacks [58, 59]) of the target device. Then the attacker can
selectively delay a specific event or command of the target device,
which is inferred from the encrypted traffic. If being detected, an
aggressive LAN attacker may try to hijack all TCP sessions to block
the communications of the entire smart home.
Method 2: Specific-cloud Delay Attack. A specific-cloud delay
attacker compromises an ISP router between the home router and
a specific IoT cloud server. Then the attacker can see all the traffic
between the home router and that specific IoT cloud server, but he
cannot see traffic between the home router and other cloud servers.
This type of attacker can hijack TCP sessions of IoT devices that
are connected to the target cloud server and delay the IoT devices’

Cloud-
connected
Devices

Vendor
Cloud A

Integration
Platforms

LAN

Local
Platforms

Vendor
Cloud B

Local-
connected
Devices

Device
Traffic

Monitor

Device
Manager

Platform
Interface

Home Router

WAN Attacker

event

command

MP-Mediator

Dev2 Dev1

LD-MPM MPM-LP

VC-MPMCDwAPI-VC

CDwoAPI-VC

MPM-IP

VC-IP

Sniffing
Function

Network
Traffic

Figure 5: Architecture ofMP-Mediator. Devices on a)CDwAPI-
VC: cloud APIs; b) CDwoAPI-VC: no APIs available; c) LD-
MPM: local APIs or Zigbee/Z-Wave. Dev1 and Dev2 are cloud-
connected devices on CDwAPI-VC and CDwoAPI-VC, respec-
tively. Three different event flows (solid arrows) are detailed
below: 1) Cloud-connected Device (Dev1) → Device Traffic
Monitor → CDwAPI-VC → Vendor Cloud A → VC-MPM →
Device Manager → Platform Interface → MPM-IP / MPM-LP
→ Integration Platform / Local Platform; 2) Cloud-connected
Device (Dev2)→ Device Traffic Monitor→ CDwoAPI-VC →
Vendor Cloud B→ VC-IP → Integration Platform; 3) Local-
connected Device → LD-MPM → Device Manager → Plat-
form Interface→MPM-IP /MPM-LP → Integration Platform
/ Local Platform. The direction of command flows (hollow
arrows) is reverse to the event flow directions. The full names
of the network link acronyms are given in Table 1.

events or commands at will. If being detected, an aggressive specific-
cloud attacker could block all traffic between the home router and
the cloud server, causing all connected devices to lose connection.
For each individual device, the consequence is the same as that of the
stealthy delay attacks. Thus, we do not further discuss aggressive
specific-cloud attackers.
Method 3: First-hop Delay Attack. A first-hop delay attacker
compromises the connection between the home router and the
first-hop ISP router, which allows the attacker to see all network
traffic between the home and the Internet. For example, an attacker
can find the network cable outside the victim’s home and deploy an
active Test Access Point (TAP) [38] on the cable so that he can hijack
all TCP sessions. Besides, the attacker can identify IoT devices and
messages using existing techniques as discussed in Section 2.2, and
then he can delay any events/commands to/from cloud servers.
If being detected, an aggressive first-hop attacker could block all
network traffic from/to the victim’s home, which results in a loss
of Internet connection.

49

MP-Mediator: Detecting and Handling the New Stealthy Delay Attacks on IoT Events and Commands RAID ’23, October 16–18, 2023, Hong Kong, China

Table 1: Descriptions of link acronyms in Figure 5.

Link Acronym Full Description

CDwAPI-VC The network link between Cloud-connected Device with APIs
and Vendor Cloud.

CDwoAPI-VC The network link between Cloud-connected Device without
APIs and Vendor Cloud.

VC-MPM The network link between Vendor Cloud and Multi-Platform
Mediator.

LD-MPM The network link between Local-connected Device and Multi-
Platform Mediator.

MPM-LP The network link between Multi-Platform Mediator and Local
Platform.

MPM-IP The network link between Multi-Platform Mediator and
Integration Platform.

VC-IP The network link between Vendor Cloud and Integration
Platform.

4 SYSTEM OVERVIEW
MP-Mediator is a defense system that can effectively detect and
handle IoT message delay attacks in a smart home ecosystem. MP-
Mediator locates between IoT devices and integration platforms.
It breaks each direct connection into two separate ones so that
IoT messages flow through MP-Mediator where the detection and
handling are performed.

4.1 Overview of MP-Mediator
Similar to [30, 42, 46], MP-Mediator can be deployed as software in
a Wi-Fi router (e.g., OpenWrt-based router [12]) at home. Figure 5
shows the architecture of MP-Mediator, which includes Device Traf-
fic Monitor, Device Manager, Platform Interface and the sniffing
function. Table 1 shows the full descriptions of the link acronyms.
Hollow arrows represent event flows and solid arrows represent
command flows. We discuss each module below: (a) the Device
Traffic Monitor intercepts connections between cloud-connected
IoT devices and their vendor cloud servers. It relays network traffic
without modifying any packets; (b) the Device Manager is for han-
dling the joining or leaving of devices, as well as receiving events
from devices and sending commands to devices; (c) the Platform
Interface interacts with cloud platforms, including authorization,
authentication, receiving commands from platforms, and forward-
ing IoT events to platforms; (d) the built-in sniffing function is used
to infer device events and commands from the sniffed traffic in LAN.
Note that the existing works have achieved satisfying accuracy in
inferring IoT events and commands as discussed in Section 2.2.

In addition to the four modules shown in Figure 5, MP-Mediator
also has a VPN client and a table built into it, where (e) the VPN
client is used to create a VPN tunnel that can secretly forward
messages without being discovered by attackers, which is the VPN-
based method that is used for handling command delay attacks
(more details in Section 5.3.1); (f) the table is maintained by MP-
Mediator for storing the status of devices (including virtual devices
that are used in virtual rules), as well as access tokens for interfacing
with integration platforms, and it is updated based on every received
device event (the initial status values in the table are automatically
configured by MP-Mediator without any user involvement). With
the device table in MP-Mediator, we propose to further confirm
the correctness of the sniffed events and commands in the sniffing

function, by utilizing the device status stored in the table to improve
the accuracy. Taking a smart switch as an example, assume its
current status is “OFF” and it is the same as the record in the table.
Then the sniffing function inside MP-Mediator sniffs an event from
the smart switch in LAN and recognizes it as an “ON” event. By
checking the previous status of the smart switch in the table, which
is “OFF”, we can confidently think that the sniffed event is indeed
an “ON” event. Note that the sniffing function is used to infer an
event that occurs in LAN before MP-Mediator actually receives it.
The table updates the device status based on the actually received
event (if not delayed), instead of the sniffed or inferred event.

4.2 Device Traffic Monitor
The Device Traffic Monitor is built inside MP-Mediator to intercept
traffic between devices and their vendor cloud servers on CDwAPI-
VC and CDwoAPI-VC, so that it can monitor and control the traffic
whenever it is necessary. Specifically, the Device Traffic Monitor
listens on a socket on the device side, and when it receives a TCP
connection request from a device to a cloud server, the Device
Traffic Monitor accepts it and then starts another TCP connection
with the cloud server. After both TCP connections are established,
TCP payloads are forwarded between them. Although the Device
Traffic Monitor intercepts a TCP connection (i.e., it sets up two new
TCP connections: one with the device and the other with the cloud),
it keeps the original encrypted end-to-end TLS session and other
upper layers unchanged.
CDwAPI-VC: IoT devices on CDwAPI-VC do not have local APIs
and cannot be directly connected to the Device Manager without
going through their vendor cloud servers. However, they have cloud
APIs available that can be used by the Device Manager to connect
these IoT devices.
CDwoAPI-VC: IoT devices on CDwoAPI-VC neither have local APIs
nor cloud APIs, and thus there is no way to connect them to the
Device Manager. These devices can only be connected to their
vendor cloud servers.
VC-IP: IoT devices connected to their vendor cloud servers via
CDwoAPI-VC can be further connected to integration platforms to
work with other devices from different vendors.

4.3 Device Manager
MP-Mediator needs to connect IoT devices to manage their events
and commands. The Device Manager is responsible for interactions
with various IoT devices that use different communication tech-
nologies. It receives events and forwards commands to target IoT
devices, as illustrated by the arrows in Figure 5. The Device Man-
ager either directly connects IoT devices via LD-MPM or connects
IoT devices through their vendor cloud servers via VC-MPM.
VC-MPM:TheDeviceManager uses cloudAPIs to access devices on
their vendor cloud servers. Besides, the DeviceManager periodically
polls device status from the vendor cloud servers using cloud APIs
to keep knowledge of device status up-to-date.
LD-MPM:Devices on LD-MPM are directly connected to the Device
Manager, which implies that these devices can be locally controlled
without going through vendor cloud servers. Such devices include
Wi-Fi devices with local APIs, Zigbee devices, and Z-Wave devices.

50

RAID ’23, October 16–18, 2023, Hong Kong, China Xuening Xu, Chenglong Fu, and Xiaojiang Du

4.4 Platform Interface
By using platforms’ SDKs, after a successful authorization and
authentication process, the Platform Interface provides integration
platforms access to the instances of the devices that are connected
to the Device Manager. Contrary to the Device Manager, it receives
commands from and forwards device events to the integration
platforms, which can be divided into local integration platforms
and cloud integration platforms according to where they are hosted.
MPM-LP: The Platform Interface interacts with local integration
platforms within the home LAN, such as HomeKit.
MPM-IP: The Platform Interface interacts with cloud integration
platforms, such as SmartThings and IFTTT.

5 MP-MEDIATOR: DETECTING AND
HANDLING OF DELAY ATTACKS

We first analyze three different delay attack methods and discuss
the relationship between the first-hop attack and the specific-cloud
attack in Section 5.1. Then we present detailed solutions to detect
and handle the delay attacks on different links based on the archi-
tecture of MP-Mediator in Section 5.2 and Section 5.3, respectively.
The main idea is to use a timer and the ground truth of the timing of
sending events (or receiving commands) from the sniffing function
to check if an event or command is successfully delivered within
the normal time frame. Section 5.4 discusses the defense against
aggressive attacks. Implementation details are given in Appendix A
due to the page limit.

5.1 Analysis of Three Attack Methods
5.1.1 LAN Delay Attack. Different from other components, the
directly connected devices (on LD-MPM) and local platforms (on
MPM-LP) are only vulnerable to the LAN delay attack, which
hijacks the TCP connection between two devices in LAN. Since MP-
Mediator is secure and also resistant to both MITM and redirection
attacks as assumed in Section 3, the messages sent by MP-Mediator
are not affected by the delay attacks. Specifically, commands on
LD-MPM and events on MPM-LP cannot be delayed by LAN delay
attacks. For other links, the LAN delay attack is similar to the other
two attack methods explained below.

5.1.2 Specific-cloud Delay Attack. The specific-cloud delay at-
tack hijacks the TCP connection between the home router and a
specific cloud server. As shown in Figure 5, the attacker can hijack
TCP connections on different links to delay events or commands:
(1) CDwoAPI-VC, (2) CDwAPI-VC, VC-MPM, and (3) MPM-IP. An
attacker could also launch delay attacks on VC-IP between two
cloud servers. Considering that the traffic on VC-IP is composed of
event and command messages from many different smart homes, it
is difficult for an attacker to precisely delay an event or command of
interest for a specific smart home. A Distributed Denial-of-Service
(DDoS) attack targeted at a vendor cloud server on VC-IP may
achieve similar consequences to the delay attacks, which may bring
down the entire vendor cloud server and affect all smart homes
associated with it. Note that most current cloud servers are well
protected against DDoS attacks by various defenses, such as Con-
tent Delivery Networks and load balancers. Based on the above, the
delay attack on VC-IP is not within the scope of this paper.

5.1.3 First-hop Delay Attack. Unlike the specific-cloud attacker,
who has control of TCP connections to only one cloud server, an
attacker that launches the first-hop delay attack has control of all
network traffic of the victim’s home. Besides, the attacker can dis-
tinguish different TCP connections and delay multiple TCP connec-
tions to various cloud servers. It is possible for a first-hop attacker to
delay events/commands onCDwAPI-VC,VC-MPM, andCDwoAPI-VC
simultaneously. Note that a cloud-connected device is either con-
nected viaCDwoAPI-VC orCDwAPI-VC. Delaying events/commands
on CDwoAPI-VC will not affect devices connected via CDwAPI-
VC and VC-MPM, and vice versa. Thus, for each individual cloud-
connected device, the first-hop delay attack is similar to the specific-
cloud delay attack in terms of consequences, and the defenses for
the specific-cloud attack also apply to the first-hop delay attack.

5.2 Detection of Delay Attacks
In this subsection, we present detailed methods for detecting the
message delay attack on various links. Although the detection meth-
ods are presented separately for each link, they can be used in combi-
nation when an attacker delays multiple links of an event/command.

5.2.1 Detecting Delay Attacks on CDwAPI-VC & VC-MPM. Suppose
a cloud-connected physical device (e.g., a device in the bottom-left
of Figure 5) named “Dev1” is first connected to its vendor cloud
via CDwAPI-VC and then connected to the Device Manager via
VC-MPM. The Device Manager receives its events and the Platform
Interface forwards them to the integration platform via MPM-IP.
Any command sent from the integration platform first arrives at
the Platform Interface and is then forwarded to the vendor cloud of
Dev1 via VC-MPM by the Device Manager. Finally, the command is
sent to Dev1 through CDwAPI-VC.
Against Event Delay Attacks. Although the attacker can choose
to delay an event either on CDwAPI-VC or VC-MPM, essentially the
results are the same, i.e., the Device Manager does not receive the
event timely. Every time Dev1 sends an event to the integration
platform, the sniffing function sniffs the event in LAN and a timer
is started. The Device Manager expects to receive the event from
VC-MPM within a short time. If the timer expires before receiving
the event, it indicates that an event delay attack happens on either
CDwAPI-VC or VC-MPM and MP-Mediator detects it.
Against Command Delay Attacks. There are two options to delay
commands for Dev1. One is to launch delay attacks on VC-MPM, and
the other is to delay commands on CDwAPI-VC. All commands are
initially issued by an integration platform. Every time the Device
Manager forwards a command to the target device via VC-MPM and
then CDwAPI-VC, a timer is started to sniff the command in LAN.
If the timer expires and the command is not sniffed, MP-Mediator
knows the command has been delayed on either CDwAPI-VC or VC-
MPM. To further determine which link has been delayed, we need
to know the time when the vendor cloud receives the command.
Specifically, if the vendor cloud receives the command before the
timer expires, then most likely the command delay attack happens
on CDwAPI-VC. Otherwise, the attack happens on VC-MPM. If an
IoT vendor provides such timing information (actually, Samsung
SmartThings supports that), MP-Mediator can more precisely deter-
mine if a delay attack happens on either CDwAPI-VC or VC-MPM.

51

MP-Mediator: Detecting and Handling the New Stealthy Delay Attacks on IoT Events and Commands RAID ’23, October 16–18, 2023, Hong Kong, China

5.2.2 Detecting Delay Attacks on CDwoAPI-VC. Suppose a physi-
cal device named “Dev2” connects to its vendor cloud and then to
an integration platform via CDwoAPI-VC and VC-IP. Note that the
traffic of Dev2 does not go through MP-Mediator and MP-Mediator
cannot directly interfere with its events and commands. To be in-
volved with Dev2, MP-Mediator creates two virtual devices named
“Vir-Dev2-E” (for events) and “Vir-Dev2-C” (for commands), which
are hosted on MP-Mediator and connected to integration platforms
via MPM-IP. With the help of virtual devices, MP-Mediator is able
to detect (Section 5.2.2) and handle (Section 5.3.2) the delay attacks.
Against Event Delay Attacks. In order to know if an event gener-
ated by Dev2 has been received by the integration platform timely,
a virtual rule is generated for Dev2 and Vir-Dev2-E: Turn on/off
Vir-Dev2-E if Dev2 is turned on/off, which establishes a one-to-one
correspondence between the physical device Dev2 and the virtual
device Vir-Dev2-E. This virtual rule is triggered by Dev2’s event
to send a command to Vir-Dev2-E on MP-Mediator, so that once
the Platform Interface receives a command to Vir-Dev2-E, MP-
Mediator knows a Dev2’s event has been successfully received by
the integration platform. The reason the command to Vir-Dev2-
E can be sent to the Platform Interface without being delayed is
due to the heartbeat mechanism on MPM-IP, which is explained in
Section 5.2.5. Every time Dev2 sends an event to its vendor cloud
and then to the integration platform, the sniffing function inside
MP-Mediator sniffs the event in LAN and a timer is set to wait for
the command to be delivered to Vir-Dev2-E. If the timer expires
before Vir-Dev2-E receives the command, MP-Mediator considers
that the event has been delayed by an attacker.
Against Command Delay Attacks. Solutions for detecting com-
mand delay attacks on CDwoAPI-VC require knowledge of automa-
tion rules. Note that the rule extraction has been widely studied
by recent literature and several effective techniques have been pro-
posed, such as code analysis [34, 43] and symbolic execution [23, 26].
For each automation rule that sets an action on Dev2, e.g., Turn
on/off Dev2 if motion is detected when the owner is home, a virtual
rule for Vir-Dev2-C is generated on the integration platform: Turn
on/off Vir-Dev2-C if motion is detected when the owner is home, where
the trigger and condition of the two rules are identical so that they
can be triggered at the same time. Every time the Platform Inter-
face receives a command to Vir-Dev2-C, MP-Mediator knows a
command is being sent to Dev2 from the integration platform and
it starts a timer to wait for the sniffing function to confirm the
successful delivery of the Dev2’s command by sniffing it in LAN. If
the timer expires before sniffing the command, a command delay
attack is considered to have occurred on CDwoAPI-VC.

5.2.3 Detecting Delay Attacks on LD-MPM. Recall thatMP-Mediator
is resistant to redirect attacks (Section 3), hence commands from
MP-Mediator on LD-MPM cannot be delayed. For LD-MPM, we only
need to detect the event delay attacks. When the sniffing function
sniffs an event from a device on LD-MPM, a timer is set for the
Device Manager to receive it. If the timer expires before receiving
the event, then it is considered to be delayed by an attacker.

5.2.4 Detecting Delay Attacks on MPM-LP. As mentioned in Sec-
tion 5.1, device events from MP-Mediator on MPM-LP cannot be
delayed by LAN delay attacks due to the resistance of MP-Mediator

to redirect attacks (see Section 3). We utilize this feature to main-
tain simulated heartbeats with a short time interval between MP-
Mediator and a local platform (e.g., the Apple HomePod, which
hosts the HomeKit platform). Specifically, we create two virtual
devices named “Vir-Dev3-HB” and “Vir-Dev3-ACK”. In addition, a
virtual rule is generated on the local platform: Turn on/off Vir-Dev3-
ACK when Vir-Dev3-HB is turned on/off. MP-Mediator periodically
toggles Vir-Dev3-HB in a short interval to generate device events to
simulate HeartBeat messages, which trigger the virtual rule on the
local platform to issue commands to Vir-Dev3-ACK. The commands
act as acknowledgment messages to the heartbeats. In this way,
the short-period event and command messages simulate heartbeat
and acknowledgment messages, which check the connection of
MPM-LP at short intervals and detect possible delay attacks. Note
that an attacker does not gain anything by delaying heartbeat or ac-
knowledgment messages. A delayed event or command onMPM-LP
also delays subsequent heartbeat and acknowledgment messages
in the same session. Thus, any delay attacks on MPM-LP can be
detected by the simulated heartbeat mechanism. If MP-Mediator
has not received command messages to Vir-Dev3-ACK for a while,
it considers that a command delay attack has happened onMPM-LP.
With the heartbeats, a delay attack can be quickly detected and
cannot stay stealthy.

5.2.5 Detecting Delay Attacks on MPM-IP. The method for detect-
ing the delay attacks on MPM-IP is similar to that on MPM-LP
because they are both connections between MP-Mediator and IoT
platforms. MP-Mediator creates two virtual devices named “Vir-
Dev4-HB” and “Vir-Dev4-ACK”, and connects them to the integra-
tion platform. Similarly, a virtual rule is also generated to realize
the interaction between these two virtual devices. MP-Mediator
periodically toggles Vir-Dev4-HB in a short time interval to simu-
late HeartBeats between MP-Mediator and the integration platform.
Unlike heartbeat packets on MPM-LP that are completely within
the LAN, the heartbeat packets on MPM-IP could be delayed by at-
tackers because MPM-IP actually consists of multiple hops that are
outside the LAN (e.g., ISP routers). If a heartbeat packet is missing,
then MP-Mediator detects there is a delay attack on MPM-IP. With
a short heartbeat interval, an attacker cannot launch the stealthy
delay attacks on MPM-IP. If an attacker insists on launching delay
attacks on MPM-IP, it can be quickly detected.

5.3 Handling Delay Attacks
In this section, we present methods for handling the delay attacks
on different links, using the same examples and descriptions from
Section 5.2. Similar to the detection methods, the handling methods
can also be used in a combined manner for handling delay attacks
on multiple links.

5.3.1 Handling Delay Attacks on CDwAPI-VC & VC-MPM.
Against Event Delay Attacks. During the automation rule con-
figuration stage, a user determines the urgency of the rules using
either common sense (e.g., a fire alarm is urgent) or online/expert
recommendations. If an event is delayed, MP-Mediator first exam-
ines whether the delayed event is urgent. If urgent (e.g., smoke/fire
detected), the Device Manager directly sends the corresponding
command that should be triggered by the event to the target device.

52

RAID ’23, October 16–18, 2023, Hong Kong, China Xuening Xu, Chenglong Fu, and Xiaojiang Du

L1

LK

VD

M1 L2

P3 WL M3

SD

M2AHSS1

P1

P4

P2

CAM

SR

SS2

L4M4

L3

B

Figure 6: The testbed floor plan and device placement layout.
The device abbreviation labels are given in Table 2.

If not urgent, MP-Mediator alerts the user and forwards the sniffed
event to the integration platform.
Against Command Delay Attacks. To handle command delay
attacks on VC-MPM, one option is that MP-Mediator asks the user
to issue the command on her smartphone, which uses a cellular
network (not subject to the delay attacks) and can successfully
deliver the command to the vendor cloud. If the command delay
attack happens on CDwAPI-VC, then the best one (including MP-
Mediator) can do is to alert the user about the attack since the only
path to send commands to Dev1 is being attacked. An optional
solution is to use the following VPN-based method.

MP-Mediator has a built-in OpenVPN client and a VPN-based
function to send a delayed command to the target device. For in-
stance, suppose a command that should be sent to Dev1 has been
delayed on CDwAPI-VC. Recall that the Device Traffic Monitor has
control of the current TCP session (Section 4.2), and it uses two
different sockets to communicate with the IoT device and the cloud
server, separately. To force the IoT device to re-establish a new
connection with its cloud server, the Device Traffic Monitor inten-
tionally shuts down the device-side socket so that the IoT device
thinks its cloud server terminates the current TCP session and it
immediately tries to establish a new TCP session. Meanwhile, MP-
Mediator creates a VPN tunnel between Dev1 and its vendor cloud,
which encrypts the entire original IP packets, including the origi-
nal source/destination IP addresses and the original port numbers,
which are utilized by attackers to distinguish different connections
between IoT devices and vendor cloud servers. The VPN tunnel is
completely concealed from the attackers. Once the new TCP session
is established, MP-Mediator can re-send the delayed command to
the target device Dev1 through the secret VPN tunnel.

5.3.2 Handling Delay Attacks on CDwoAPI-VC.
Against Event Delay Attacks. Upon detecting an event being
delayed, MP-Mediator examines if the delayed event is urgent.
If urgent, the Device Manager directly sends the corresponding
command that should be triggered by the event to the target de-
vice. If not urgent, MP-Mediator alerts the user about the detected
delay attack. Unlike the handling on CDwAPI-VC and VC-MPM,
MP-Mediator cannot forward the sniffed event to the integration
platform since the event does not go through it.

Table 2: IoT devices used in the smart home testbed.

Abbr. Device Name Link Protocol Attributes

L1, L2 Yeelight light bulb LD-MPM Wi-Fi switch
L3, L4 Philips Hue light bulb LD-MPM Zigbee switch

P1 Wemo smart plug LD-MPM Wi-Fi switch
P2, P3 Kasa smart plug LD-MPM Wi-Fi switch

P4 Aqara smart plug CDwoAPI-VC Zigbee switch
M1 Aqara motion sensor CDwoAPI-VC Zigbee motion
M2 SmartThings motion sensor LD-MPM Zigbee motion
M3 Blue by ADT motion sensor CDwoAPI-VC Z-Wave motion
M4 Philips Hue motion sensor LD-MPM Zigbee motion
B SmartThings button LD-MPM Zigbee button

LK Kwikset Kevo Lock + Kevo Plus CDwAPI-VC Wi-Fi lock
VD Ring Video Doorbell 4 CDwAPI-VC Wi-Fi motion,

camera,
security
system

SD First Alert smoke detector LD-MPM Z-Wave smoke
SR Aeotec Siren 6 LD-MPM Z-Wave alarm
AH Aqara hub (with night light) CDwoAPI-VC Wi-Fi switch
WL SmartThings leak sensor LD-MPM Zigbee water

CAM Eufy indoor camera CDwAPI-VC Wi-Fi motion,
camera

SS1 SimpliSafe security system CDwAPI-VC Wi-Fi security
system

SS2 Blue by ADT security system CDwoAPI-VC Wi-Fi security
system

Against Command Delay Attacks. If a command is delayed on
CDwoAPI-VC, which is the only path to send commands to Dev2,
MP-Mediator can only alert users about the command delay attack.
Similar to the handling method of the command delay attacks on
CDwAPI-VC and VC-MPM, the user can choose to enable the VPN-
based function. If enabled, once the new TCP session is established,
MP-Mediator utilizes the one-to-one correspondence built by vir-
tual devices and virtual rules to send the delayed command from
the integration platform to Dev2 via the concealed VPN tunnel.

5.3.3 Handling Delay Attacks on LD-MPM. Recall that commands
on LD-MPM cannot be delayed. We only need to handle event delay
attacks, which are similar to the handling methods on CDwAPI-VC
and VC-MPM in Section 5.3.1.

5.3.4 Handling Delay Attacks on MPM-LP & MPM-IP. Attackers
would not launch delay attacks onMPM-LP orMPM-IP if they want
to stay stealthy. In case a delay attack is detected on these two links,
MP-Mediator immediately sends a notification to inform the user
about the delay attack.

5.4 Defense Against Aggressive Attacks
Asmentioned in Section 3, the consequence of an aggressive specific-
cloud delay attack is the same as that of the stealthy delay attack for
each individual device. However, it is different for the LAN delay
attack and the first-hop delay attack. If a LAN delay attacker be-
comes aggressive and tries to hijack all TCP sessions, MP-Mediator
will not be able to receive messages from other devices. However,
outgoing messages from MP-Mediator cannot be delayed by the
LAN delay attack due to its resistance to redirect attacks, and MP-
Mediator can still send the user an alert. If a first-hop attacker
becomes aggressive and blocks all network traffic, none of the IoT
devices can work normally and MP-Mediator loses the ability to
send alerts to the user. To deal with this extreme case, MP-Mediator

53

MP-Mediator: Detecting and Handling the New Stealthy Delay Attacks on IoT Events and Commands RAID ’23, October 16–18, 2023, Hong Kong, China

Table 3: Automation rules installed in the testbed.

Index Platform Automation Rules

R1 IFTTT When the smartphone presence sensor becomes inactive,
if LK is locked, set SS1, SS2 to Away and arm VD.

R2 SmartThings When the smartphone presence sensor becomes inactive,
if LK is locked, turn on CAM.

R3 IFTTT When M1 detects motion in the bathroom, turn on L1.
R4 IFTTT When M2 detects motion in the hallway, turn on AH.
R5 SmartThings When M4 detects motion, turn on L4.

R6 IFTTT When the smartphone presence sensor becomes inactive,
turn off L1, L2, L3, L4 and P1, P2, P3, P4.

R7 SmartThings When the smartphone presence sensor becomes active,
unlock LK.

R8 SmartThings When SD detects smoke, sound SR and turn on L2.

R9 IFTTT When WL detects water leak, if M3 detects no motion,
turn off P3 (simulate water valve).

R10 IFTTT When B is pressed, turn off L1, L2, L3, L4.

can use the heartbeat connection onMPM-IP and generate a virtual
rule on the integration platform: Alert the user if Vir-Dev4-HB has
not been turned on/off (i.e., no heartbeat) for more than 30 seconds. In
this way, a user can still receive alert messages from the integra-
tion platform when an aggressive attack happens and all devices at
home (including MP-Mediator) lose Internet connection.

6 EVALUATION
In Section 6.1, we introduce the smart home testbed that is de-
ployed in the real world to evaluate the proposed MP-Mediator. In
Section 6.2, we present the time needed for MP-Mediator to get
notified about the successful delivery of an event or command in
normal cases without the delay attacks. Section 6.3 presents the
timeout behavior of different IoT devices. In Section 6.4 and Sec-
tion 6.5, we evaluate the performance of detecting and handling
the delay attacks, respectively. Besides, compared to the typical
processing time and network latency between an IoT device and its
cloud server [39], which is several seconds, the overhead (latency)
of MP-Mediator due to the redirection and processing is negligible
(hundreds of milliseconds). The communication overhead of MP-
Mediator is also evaluated. Details on the overhead are presented
in Appendix B due to space limit.

6.1 The Smart Home Testbed
To evaluate the performance of MP-Mediator, we set up a real-world
smart home testbed as shown in Figure 6. The testbed is a studio
with one resident and a total of 22 IoT devices are deployed in the
testbed. Details of the devices are listed in Table 2, including de-
vice names, abbreviation labels, wireless protocols, main attributes
and link information. The link information indicates how a device
connects to MP-Mediator, which is illustrated in Figure 5. Some
of the devices, such as Aqara hub (AH) and Blue by ADT security
system (SS2), also act as hubs, connecting devices of the same brand
that use Zigbee or Z-Wave protocols. For consistency, we let such
Zigbee/Z-Wave devices connect to their own hubs, which is the
original way. That is, we do not connect such Zigbee/Z-Wave de-
vices directly to the Device Manager. A total of 10 automation rules
are installed on two popular cloud integration platforms: IFTTT
and SmartThings. Table 3 gives the details of automation rules with

Table 4: Time for MP-Mediator to confirm successful event
delivery in normal circumstances (unit: second).

Device Name (Abbr.) Link Min Max Mean Median

SimpliSafe security system (SS1) CDwAPI-VC 3.426 4.905 3.716 3.558
Kwikset Kevo Lock + Kevo Plus (LK) CDwAPI-VC 2.932 7.326 5.351 5.355

Ring Video Doorbell 4 (VD) CDwAPI-VC 1.492 3.637 2.398 2.347
Eufy indoor camera (CAM) CDwAPI-VC 1.362 6.144 3.073 2.860

Aqara hub (with night light) (AH) CDwoAPI-VC 1.328 4.983 2.021 1.842
Blue by ADT security system (SS2) CDwoAPI-VC 1.556 3.793 1.928 1.839

Yeelight light bulb (L1) LD-MPM 0.493 1.657 1.033 0.980
Wemo smart plug (P1) LD-MPM 0.234 1.629 0.947 0.965

Table 5: Time for MP-Mediator to confirm successful com-
mand delivery in normal circumstances (unit: second).

Device Name (Abbr.) Link Min Max Mean Median

SimpliSafe security system (SS1) CDwAPI-VC 0.930 7.809 1.827 1.496
Kwikset Kevo Lock + Kevo Plus (LK) CDwAPI-VC 0.775 6.862 3.090 2.981

Ring Video Doorbell 4 (VD) CDwAPI-VC 1.161 2.591 1.697 1.726
Eufy indoor camera (CAM) CDwAPI-VC 1.409 3.864 2.315 2.128

Aqara hub (with night light) (AH) CDwoAPI-VC -0.930 0.373 -0.076 -0.012
Blue by ADT security system (SS2) CDwoAPI-VC 0.294 9.522 4.827 4.956

the device abbreviations in bold. Some of the rules utilize the user’s
smartphone as a presence sensor, which is not included in Figure 6
because of the mobility of the user/smartphone, which could be
anywhere in the home. Note that a smart plug is used to simulate
the control of a water valve due to the restriction on installing a real
water valve in the testbed. Implementation details of MP-Mediator
are presented in Appendix A due to space limit.
IRBApproval:We have received IRB approval for our experiments.
The participant is fully aware of all the installed devices and au-
tomation rules. To avoid possible safety issues, the lock is tested
only when the participant is at home and is informed in advance
about the testing. The data were pre-processed to hide/remove any
sensitive and personally identifiable information (PII).

6.2 Determining the Timing Thresholds
In order to detect the delay attacks on events and commands, it
is necessary to measure how long it takes MP-Mediator to know
an event or command has been successfully delivered in normal
cases without the delay attacks. We measure the timing for all
cloud-connected devices on CDwAPI-VC and CDwoAPI-VC, as well
as some LAN-connected devices on LD-MPM. Note that commands
for devices on LD-MPM cannot be delayed by attackers, and hence
we only consider the event delay attacks for devices on LD-MPM.
Recall that the details of event and command flows are given in Fig-
ure 5. The related timing measurement can be done automatically in
a secure environment when MP-Mediator is deployed in a new IoT
system. Specifically, MP-Mediator automatically records the times-
tamp information (e.g., when sniffing, receiving, and sending events
and commands) and then calculates the thresholds accordingly.

6.2.1 Thresholds for Events. For events from CDwAPI-VC and LD-
MPM, we need to measure the time between sniffing an event in
LAN and receiving it on the Device Manager. For events from
CDwoAPI-VC, we need to measure the time between sniffing an

54

RAID ’23, October 16–18, 2023, Hong Kong, China Xuening Xu, Chenglong Fu, and Xiaojiang Du

Table 6: Measurement results of device timeout behavior without using MP-Mediator.

Abbr. Device Name Link Long-live Session Keep-alive Messages Event Messages Command Messages
Period (s) Pattern Timeout (s) Timeout (s) Range (s) Timeout (s) Range (s)

SS1 SimpliSafe security system* CDwAPI-VC Yes 55 fixed 30 20 [20,20] ∞ [30,85]
LK Kwikset Kevo Lock + Kevo Plus CDwAPI-VC Yes 30 on-idle 180 ∞ [180,210] ∞ [180,210]
VD Ring Video Doorbell 4 CDwAPI-VC Yes 60 on-idle 35 ∞ [35,95] ∞ [35,95]
CAM Eufy indoor camera CDwAPI-VC No - - - 30 [30,30] 30 [30,30]
AH Aqara hub (with night light) CDwoAPI-VC Yes 30 fixed 90 ∞ [90,120] ∞ [90,120]
SS2 Blue by ADT security system CDwoAPI-VC Yes 30 fixed 33 ∞ [33,63] ∞ [33,63]
P4 Aqara smart plug CDwoAPI-VC Yes 30 fixed 90 ∞ [90,120] ∞ [90,120]
M1 Aqara motion sensor CDwoAPI-VC Yes 30 fixed 90 ∞ [90,120] - -
M3 Blue by ADT motion sensor CDwoAPI-VC Yes 30 fixed 33 ∞ [33,63] - -

L1, L2 Yeelight light bulb LD-MPM Yes 16 on-idle 46 ∞ [46,62] ∞ [46,62]
P1 Wemo smart plug* LD-MPM No - - - 52 [52,52] 15 [15,15]

P2, P3 Kasa smart plug LD-MPM Yes 200 fixed 30 ∞ [30,230] ∞ [30,200]
M2 SmartThings motion sensor* LD-MPM Yes 31 on-idle 16 ∞ [16,47] - -
SD First Alert smoke detector* LD-MPM Yes 31 on-idle 16 ∞ [16,47] - -
SR Aeotec Siren 6* LD-MPM Yes 31 on-idle 16 ∞ [16,47] - -
WL SmartThings leak sensor* LD-MPM Yes 31 on-idle 16 ∞ [16,47] - -
B SmartThings button* LD-MPM Yes 31 on-idle 16 ∞ [16,47] - -

L3, L4 Philips Hue light bulb* LD-MPM Yes 120 fixed 60 ∞ [60,180] 21 [21,21]
M4 Philips Hue motion sensor* LD-MPM Yes 120 fixed 60 ∞ [60,180] - -

Table 7: Results of detecting event delay attacks.

Abbr. Link Threshold (s) Attacker delay (s) Precision Recall

SS1 CDwAPI-VC 6 20 100% 100%
LK CDwAPI-VC 9 [180,210] 100% 100%
VD CDwAPI-VC 5 [35,95] 100% 100%

CAM CDwAPI-VC 8 30 100% 100%
AH CDwoAPI-VC 6 [90,120] 100% 100%
SS2 CDwoAPI-VC 5 [33,63] 96.15% 100%
L1 LD-MPM 3 [46,62] 100% 100%
P1 LD-MPM 3 52 100% 100%

event in LAN and receiving a command by the corresponding vir-
tual device (Section 5.2.2). We measure 40 times for each device
and the measurement results are presented in Table 4. Minimum,
maximum, mean and median are used to capture the distribution
of the measured time for each device. On average, it takes no more
than 6 seconds for MP-Mediator to confirm a successful event de-
livery. Especially for devices on LD-MPM, it only takes less than 2
seconds due to the low latency of device-to-device communication
in LAN. The time range varies for each device. For instance, the
SimpliSafe security system has a relatively small variance, which is
from 3.426 seconds to 4.905 seconds. Table 4 shows that the Eufy in-
door camera has the largest range of time (varies from 1.362 seconds
to 6.144 seconds) among all the tested devices, but it is still accept-
able. Propagation delay and network conditions vary at different
measurements, which is the reason for the time variance. Besides,
another possible reason is that different cloud servers may have
different implementations of authentication and request scheduling.
To choose a suitable threshold for various unpredictable conditions,
we set the value to be ⌈𝑀𝑎𝑥⌉ + 1 for each device, which gives some
additional time in case of a bad network condition.

6.2.2 Threshold for Commands. For commands sent via MPM-IP
by integration platforms, they can successfully reach MP-Mediator
due to the heartbeats used to prevent the delay attacks on MPM-IP.
After that, MP-Mediator forwards commands to target devices via
VC-MPM and CDwAPI-VC. For the above process, we need to mea-
sure the time between when MP-Mediator forwards a command

Table 8: Results of detecting command delay attacks.

Abbr. Link Threshold (s) Attacker delay (s) Precision Recall

SS1 CDwAPI-VC 9 [30,85] 96.15% 100%
LK CDwAPI-VC 8 [180,210] 100% 100%
VD CDwAPI-VC 4 [35,95] 100% 100%

CAM CDwAPI-VC 5 30 100% 100%
AH CDwoAPI-VC 2 [90,120] 100% 100%
SS2 CDwoAPI-VC 11 [33,63] 98.04% 100%

to the vendor cloud and the command from the vendor cloud be-
ing sniffed in LAN. For commands sent via VC-IP by integration
platforms, they do not go through MP-Mediator. Thanks to virtual
rules and virtual devices, the integration platform issues another
command to a virtual device at the same time when issuing a com-
mand to a physical device (Section 5.2.2). We need to measure the
time between receiving the virtual command on MP-Mediator and
sniffing the command in LAN, which is sent to the physical device.

We measure 40 times for each device and Table 5 lists the mea-
surement results. On average, it takes less than 5 seconds for MP-
Mediator to confirm a successful command delivery. For CDwoAPI-
VC devices (AH and SS2), the time values are calculated by using the
time of sniffing the real command in LAN minus the time of receiv-
ing the virtual command. Note that the real and virtual commands
are issued at the same time from the cloud server, and the order
of arrival of these two commands is non-deterministic, which de-
pends on cloud servers and network conditions. E.g., for the Aqara
hub, sometimes the real command arrives earlier than the virtual
command, resulting in negative values in Table 5. For detecting the
command delay attacks, we also set the threshold to ⌈𝑀𝑎𝑥⌉ + 1.

6.3 Device Timeout Behaviour
As studied in a previous work [35], the timeout checking of ap-
plication layer protocols cannot be bypassed by attackers due to
the TLS protection of the application payload, which means that
an application layer protocol timeout would occur if an attacker
delays an event or command longer than the timeout limit. A delay

55

MP-Mediator: Detecting and Handling the New Stealthy Delay Attacks on IoT Events and Commands RAID ’23, October 16–18, 2023, Hong Kong, China

Table 9: Results of handling event delay attacks.

Abbr. Link As event in rules Handling method success / total

SS1 CDwAPI-VC None Send sniffed event
to cloud platform 50 / 50

LK CDwAPI-VC
As condition event

in R1 and R2
Send sniffed event
to cloud platform 50 / 50

VD CDwAPI-VC None Send sniffed event
to cloud platform 50 / 50

CAM CDwAPI-VC None Send sniffed event
to cloud platform 50 / 50

AH CDwoAPI-VC
As trigger event

in R3
Send R3’s command
to the target device 50 / 50

SS2 CDwoAPI-VC
As condition event

in R9
Notify user about the
event delay attack 50 / 50

L1 LD-MPM None Send sniffed event
to cloud platform 50 / 50

P1 LD-MPM None Send sniffed event
to cloud platform 50 / 50

attacker may want to delay an event or command as long as possi-
ble, without causing the time out and termination of a connection,
which maximizes the consequences of the delay attacks.

Table 6 lists the measurement results of device timeout behav-
iors without using MP-Mediator. For devices that are marked with
asterisks, their timeout behaviors have already been evaluated in
the previous work [35]. In our work, we measure the timeout be-
haviors of 10 new devices by using the same method as in [35].
The Eufy indoor camera and the Wemo smart plug establish on-
demand sessions with their cloud servers only when sending events
and receiving commands. All other devices maintain long-live TCP
and TLS sessions with their cloud servers following some patterns,
which can be divided into two categories: fixed and on-idle. A fixed
pattern means that the keep-alive messages are exchanged at a
fixed period of time no matter whether the session is idle or not,
and on-idle means that the pattern is non-periodically due to oc-
casional activities. An “∞” symbol indicates the timeout for the
device is only triggered by keep-alive messages and the device does
not have a specific timeout for the event and command messages.
The “Period” and “Timeout” parameters of keep-alive messages
indicate the time an attacker can delay a session. For example, if
an attacker delays a SimpliSafe command right before a keep-alive
message is sent, the maximum time the attacker can delay is 30
seconds. If right after a keep-alive message, the attacker can delay
up to: Period + Timeout (55+30) = 85 seconds.

6.4 Performance of Detecting Delay Attacks
We evaluate the performance of detecting the delay attacks on
events and commands in Section 6.4.1 and Section 6.4.2, respectively.
Similar to Section 6.2, we only evaluate the detection of the event
delay attacks for devices on LD-MPM. We simulate WAN delay
attacks by launching the delay attacks on the same links in LAN.

6.4.1 Detecting Event Delay Attacks. We trigger 100 events for each
device, and 50 events are sent without delay attacks. We simulate an
attacker to delay the other 50 events according to the longest time
that each device event can be delayed. Table 7 presents the detection
results for both normal (Negative) and delayed events (Positive).
The thresholds used for detection are calculated by ⌈𝑀𝑎𝑥⌉ + 1
as mentioned in Section 6.2. As shown in Table 7, MP-Mediator

Table 10: Results of handling command delay attacks.

Abbr. Link Time to
re-establish (s)

Re-sending
Cmd. delay (s)

Attacker
delay (s) success / total

SS1 CDwAPI-VC 10 19 (= 9 + 10) [30,85] 50 / 50
LK CDwAPI-VC 40 48 (= 8 + 40) [180,210] 50 / 50
VD CDwAPI-VC 25 29 (= 4 + 25) [35,95] 50 / 50

CAM CDwAPI-VC On demand 5.2 (= 5 + 0.2) 30 50 / 50
AH CDwoAPI-VC 4 6 (= 2 + 4) [90,120] 50 / 50
SS2 CDwoAPI-VC 15 26 (= 11 + 15) [33,63] 50 / 50

achieves a precision of over 96% and a recall of 100% in detecting
event delay attacks. Specifically, it only mistakenly takes two events
of the ADT security system as being delayed, which is due to a very
long network delay. Besides, MP-Mediator can detect all delayed
events based on the chosen thresholds within a short time, which
significantly reduces the amount of time an attacker can delay.

6.4.2 Detecting Command Delay Attacks. Similarly, we issue 100
commands for each device. Fifty of them are sent without delay
attacks. We simulate an attacker to delay the other 50 commands
according to the device’s longest command delay in Table 6. Re-
sults are presented in Table 8, which indicates that MP-Mediator
also has a very high precision of over 96% and a recall of 100%
in detecting command delay attacks. It takes only a few seconds
to detect command delay attacks for most of the devices. Our de-
tection mechanism significantly reduces the adversary effect of
the command delay attacks, which can cause a long delay (tens of
seconds to several minutes) on important commands.

6.5 Performance of Handling Delay Attacks
In Section 6.4, we show that MP-Mediator can accurately detect the
delay attacks. Handling the attacks is also important. We evaluate
the handling of the delay attacks on events and commands in Sec-
tion 6.5.1 and Section 6.5.2, respectively. Note that some handling
approaches are based on the urgency of the affected rule. If a rule is
not urgent, then the potential damage caused by the attack is small.
We want to focus on urgent issues. Hence, for the experiments
presented in this subsection, all the rules in Table 3 are considered
urgent and the handling methods are evaluated.

6.5.1 Handling Event Delay Attacks. Once an event delay attack
is detected, MP-Mediator handles it according to the automation
rules associated with the sniffed event. If the sniffed event is a
trigger event for some rule, MP-Mediator directly sends the ex-
pected command to the target device to fulfill the execution of the
automation rule. If the sniffed event is a condition event for some
rule, MP-Mediator sends the sniffed event to the cloud platform
to update the device’s status in a timely manner. Table 9 shows
that MP-Mediator is very effective in handling event delay attacks.
MP-Mediator successfully handles all 50 event delay attacks for
each device, and takes action to keep the smart home secure and
device status up-to-date. Please note, even if MP-Mediator sends a
duplicate event to the cloud platform due to an unintentional delay
in the event message, it will not alter the state of the corresponding
device. Therefore, it does not cause any operational issues for the
home automation system.

56

RAID ’23, October 16–18, 2023, Hong Kong, China Xuening Xu, Chenglong Fu, and Xiaojiang Du

6.5.2 Handling Command Delay Attacks. Handling command de-
lay attacks is more crucial since commands are actions that should
be taken to keep the smart home ecosystem safe and secure. As
mentioned in Section 5.2.1, when a command delay attack hap-
pens on CDwAPI-VC and VC-MPM, we cannot determine the exact
link. Thus, when handling command delay attacks on CDwAPI-VC
and VC-MPM, we combine the solutions for both attack scenarios.
Specifically, MP-Mediator issues the command on a smartphone
using a cellular network to ensure the command can be successfully
delivered to the vendor cloud server, and then uses the VPN-based
method to send the command to the target device.

Upon detecting a command delay attack, MP-Mediator imme-
diately terminates the device-side TCP connection at the Device
Traffic Monitor by shutting down the socket and then starts a VPN
service to tunnel the new connection. The IoT device thinks the
cloud server terminates the previous connection, and it tries to es-
tablish a new connection with the cloud server. Evaluation results
of handling command delay attacks are shown in Table 10. Note
that the Eufy indoor camera does not maintain long-live sessions.
The connection with its cloud server is on-demand and can be es-
tablished instantly (about 0.2 seconds). The total time of re-sending
a command is also measured and listed in Table 10, which is cal-
culated by adding the threshold and the time for re-establishment.
The results show that terminating a previous connection and then
establishing a new one takes some time (which is the last part in
column 4 of Table 10). The on-demand case has no previous connec-
tion to terminate and can immediately establish a new connection,
so it is very short (0.2 seconds). All 50 commands of each device
can be successfully re-sent via the VPN tunnel before the attacker
finishes the delay. The attacker can delay some of the commands
(e.g., a command for AH) up to 120 seconds, but it only takes 6
seconds for MP-Mediator to detect and re-send them, which greatly
reduces the delay of the commands and protects the smart home.

7 RELATEDWORK
The stealthy delay attacks on events and commands in smart home
environments are newly discovered. To the best of our knowledge,
there is no prior work on detecting and handling the new attacks.
In this section, we discuss and clarify why existing solutions are not
suitable for protecting smart homes against the new delay attacks.
Jamming attacks are the most similar to the stealthy delay attacks,
which we discuss in Appendix C due to space limit.
Exploration of misordered messages. Some prior works [27, 39]
studied the impact of misordered events/commands and proposed
some solutions to mitigate them. A secure service named Omega
is proposed in [27] offering guarantees regarding the ordering of
events. However, the secure service relies on special hardware
security modules such as Intel SGX [28] and requires the devices to
install edge computing client software, which includes asymmetric
encryption operations. Most smart home IoT devices do not have
special hardware security modules and do not have the resources to
run asymmetric encryption. These limitations make it impractical
to protect billions of existing IoT devices that have been deployed
but do not have the hardware security modules and/or computation
resources. Another recent paper [39] only measures the latency
of cloud-based IoT services and does not discuss any mitigation

methods at all. Our work is the first to discuss the detection and
handling of the new delay attacks [35].
Policy-based approaches. Some existing works [24, 31] propose
run-time policy enforcement systems to detect unsafe and insecure
device states using security policies specified by users/experts or
learned from the environmental context. These policy-based meth-
ods may be able to detect some of the delay attacks if the delayed
devices cause violations of one of the pre-defined policies. However,
policy-based methods have the following issues:

1) It is very difficult (if possible) to ensure a set of pre-defined
policies is complete, i.e., the pre-defined policies cover all possible
scenarios/attacks. For example, delaying the event of a presence
sensor becoming not-present (when the user is leaving home) does
not violate any policies listed in [24], because activities are consid-
ered legitimate when the user is at home (the system mistakenly
believes that). However, suppose this presence sensor’s event is
used as the trigger to automatically lock the smart lock/door, de-
laying it causes the locking action to be delayed accordingly after
the user leaves home, which increases the risk of burglary.

2) It is difficult to ensure that a set of pre-defined policies is
accurate for different homes, which may have different IoT devices
installed in different rooms/locations. Furthermore, unexpected and
complex situations can arise in a smart home environment that the
pre-defined policies cannot correctly handle. E.g., for the policy
defined in [24]: “The windows must not be open when the heater is
on”, it prohibits windows from opening even if the heater causes
a fire, which may further cause serious harm to residents due to
smoke buildup and/or carbon monoxide poisoning.

3) Moreover, even if the policies are accurate and complete
(which is very difficult if not impossible), the policy enforcement
systems can only handle the delay attacks after they happen, but
cannot detect the delay attacks when they initially occur. Without
timely detection, severe consequences could happen to a smart
home. For instance, considering a policy “Turn on sprinkler when
the smoke detector detects fire”, if a delay attack delays the event of
the smoke detector, the policy cannot be enforced since the policy
enforcement system is not aware of this critical event, which may
cause fire undetected in time and threaten the safety of the resi-
dents. In such situations, every second matters. On the other hand,
MP-Mediator can detect the delayed event of the smoke detector
in a timely manner when it happens and immediately take action,
e.g., turning on the sprinkler and alerting the residents.
Anomaly detection systems. Recent works [20, 21, 36, 54] uti-
lize physical context among IoT devices to detect anomalies of
intercepted/masked events and commands, which have similar con-
sequences as the new delay attacks studied in this paper. However,
these anomaly detection methods are not suitable for detecting
the new delay attacks. In general, physical context-based anom-
aly detection methods require correct and up-to-date device states
in order to reflect the ever-changing real-world physical environ-
ment. To this end, they rely on various sensors to collect real-time
sensor events from the physical environment, but the sensors them-
selves are vulnerable to the delay attacks (e.g., sensor events being
delayed), causing an inconsistency between the real-world environ-
ment and the context generated by the out-of-date device states.

Peeves [20] andHaunted House [21] can only detect anomalies of
actuator (but not sensor) events that cause changes in the physical

57

MP-Mediator: Detecting and Handling the New Stealthy Delay Attacks on IoT Events and Commands RAID ’23, October 16–18, 2023, Hong Kong, China

environment, while MP-Mediator can detect the delay attacks on
both events and commands of both sensors and actuators. Besides,
both Peeves and Haunted House require a high sampling rate on nu-
meric sensor data to capture changes in the physical environment,
which requires specialized hardware and causes a large overhead.
Compared to HAWatcher [36], MP-Mediator does not need to mine
or rely on correlations as HAWatcher does. Besides, HAWatcher
has a 60-second timeout threshold for anomaly detection and it
cannot detect anomalies if the delay is shorter than 60 seconds.
The timeout thresholds for MP-Mediator are much shorter than
60 seconds and delay attacks can be quickly detected. Aegis [54]
focuses on differentiating benign and specific types of malicious
activities/behaviors based on the contextual model, which is essen-
tially a group of device states updated according to the received
sensor/device events. As mentioned, the context model itself is
vulnerable to the event delay attacks.

8 DISCUSSION
VPN-based method. The use of the VPN-based function signif-
icantly enhances the capability of MP-Mediator in handling de-
layed commands. There are out-of-box configuration templates and
scripts for non-technical users that provide a one-click setup of the
VPN-related functions. The additional cost of resources is negligible
since the VPN-based function is only used when a command delay
attack is detected. In normal situations, there is no traffic trans-
mitted through the VPN tunnel. This makes it possible to deploy
the VPN-based function on many free-tier public services, such as
Google Cloud Free Program [5]. Optionally, users can also disable
the function temporarily in low-risk periods, during which they can
still receive alerts when the command delay attacks are detected.
Timeout threshold poisoning attack. As mentioned in Sec-
tion 6.2, the timeout thresholds used for detecting delay attacks
need to be measured in a secure environment. In the worst case, an
attacker may conduct delay attacks during the threshold measuring
stage, which poison the timing information and result in inaccu-
rate thresholds. To mitigate this issue, MP-Mediator can perform
random sampling on the data before calculating timeout thresholds.
Adaptive attackers. The detection timeout threshold is set to be
⌈𝑀𝑎𝑥⌉ + 1 for each device (Section 6.2). Although an adaptive at-
tacker who knows the threshold used for the detection may conduct
delay attacks up to the defined threshold without being detected,
the “Threshold” and “Attacker delay” columns in Table 7 and Ta-
ble 8 show that: the timeout-based method significantly limits the
time an adaptive attacker can delay and reduces the consequences.
Alternative threshold choosing and fine-tuning. While a di-
verse range of IoT devices requires timeout thresholdmeasurements,
users can conveniently share these values via online forums and
communities. This allows others with the same device model to
apply the values directly without measuring again. Considering the
variety of network conditions in different smart homes, users can
adjust the thresholds according to their preferences, balancing the
trade-off between security and false alarms based on the shared
values.
UDP protocol. In this work, we demonstrate the design of MP-
Mediator with IoT devices that utilize TCP connections because
TCP is still the dominating transport layer protocol being used by

IoT devices [41]. Even for devices using UDP, MP-Mediator still
performs well on monitoring devices’ traffic by using the metadata
in their application layer protocols such as CoAP [2] and QUIC [13].

9 CONCLUSION
In this work, we presented MP-Mediator, a module that can ef-
fectively detect and handle the stealthy delay attacks, which can
be launched on most smart home/office IoT systems. This is the
first study that addresses the new family of attacks, which could
cause severe consequences (e.g., CO poisoning, fire, and burglary)
in smart home/office. We proposed novel virtual-device and virtual-
rule based approaches, as well as other effective approaches to
detect and handle the delay attacks. For the command delay at-
tack, we presented a VPN-based method that immediately sends
a delayed command via a secret tunnel right after detecting the
attack. We implemented MP-Mediator in a real-world smart home
testbed that connects twenty-two IoT devices and two popular inte-
gration platforms. We evaluated the performance of MP-Mediator
and showed that MP-Mediator can quickly detect and effectively
handle the delay attacks on both IoT events and commands for
various scenarios.

ACKNOWLEDGMENTS
This work was supported in part by the US National Science Foun-
dation (NSF) under grants CNS-2204785 and CNS-2205868.

REFERENCES
[1] 2023. Amazon Alexa. https://developer.amazon.com/.
[2] 2023. Constrained Application Protocol. https://en.wikipedia.org/wiki/Constrai

ned_Application_Protocol.
[3] 2023. Eclipse Mosquitto - An open source MQTT broker. https://mosquitto.org/.
[4] 2023. GoControl HUSBZB-1 USB Stick. https://www.gocontrol.com/detail.php

?productId=6.
[5] 2023. Google Cloud Free Program. https://cloud.google.com/free/docs/gcp-free-

tier/#compute.
[6] 2023. Home Assistant – Open source home automation that puts local control

and privacy first. https://www.home-assistant.io/.
[7] 2023. Homebridge – Bringing HomeKit support where there is none. https:

//homebridge.io/.
[8] 2023. HomKit. https://developer.apple.com/homekit/.
[9] 2023. IFTTT - Every thing works better together. https://ifttt.com/.
[10] 2023. ioBroker – Automate your life. https://www.iobroker.net/.
[11] 2023. openHAB – an open-source platform for empowering home automa-tion.

https://www.openhab.org/.
[12] 2023. OpenWrt. https://openwrt.org/.
[13] 2023. QUIC. https://en.wikipedia.org/wiki/QUIC.
[14] 2023. SmartThings. https://www.smartthings.com/.
[15] 2023. SONOFF ZigBee 3.0 - a universal Zigbee USB stick.
[16] 2023. Z-Wave JS UI - Fully configurable Zwave to MQTT Gateway and Control

Panel. https://github.com/zwave-js/zwave-js-ui.
[17] 2023. Zigbee2MQTT - Zigbee to MQTT bridge, get rid of your proprietary Zigbee

bridges. https://www.zigbee2mqtt.io/.
[18] Abbas Acar, Hossein Fereidooni, Tigist Abera, Amit Kumar Sikder, Markus Mietti-

nen, Hidayet Aksu, Mauro Conti, Ahmad-Reza Sadeghi, and Selcuk Uluagac. 2020.
Peek-a-boo: I see your smart home activities, even encrypted!. In Proceedings of
the 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks.
207–218.

[19] Emrah Bayraktaroglu, Christopher King, Xin Liu, Guevara Noubir, Rajmohan
Rajaraman, and Bishal Thapa. 2013. Performance of IEEE 802.11 under jamming.
Mobile Networks and Applications 18, 5 (2013), 678–696.

[20] Simon Birnbach and Simon Eberz. 2019. Peeves: Physical event verification in
smart homes. (2019).

[21] Simon Birnbach, Simon Eberz, and Ivan Martinovic. 2022. Haunted House:
Physical Smart Home Event Verification in the Presence of Compromised Sensors.
ACM Transactions on Internet of Things 3, 3 (2022), 1–28.

[22] Ioannis Broustis, Konstantinos Pelechrinis, Dimitris Syrivelis, Srikanth V Krish-
namurthy, and Leandros Tassiulas. 2009. FIJI: Fighting implicit jamming in 802.11

58

https://developer.amazon.com/
https://en.wikipedia.org/wiki/Constrained_Application_Protocol
https://en.wikipedia.org/wiki/Constrained_Application_Protocol
https://mosquitto.org/
https://www.gocontrol.com/detail.php?productId=6
https://www.gocontrol.com/detail.php?productId=6
https://cloud.google.com/free/docs/gcp-free-tier/#compute
https://cloud.google.com/free/docs/gcp-free-tier/#compute
https://www.home-assistant.io/
https://homebridge.io/
https://homebridge.io/
https://developer.apple.com/homekit/
https://ifttt.com/
https://www.iobroker.net/
https://www.openhab.org/
https://openwrt.org/
https://en.wikipedia.org/wiki/QUIC
https://www.smartthings.com/
https://github.com/zwave-js/zwave-js-ui
https://www.zigbee2mqtt.io/

RAID ’23, October 16–18, 2023, Hong Kong, China Xuening Xu, Chenglong Fu, and Xiaojiang Du

WLANs. In International Conference on Security and Privacy in Communication
Systems. Springer, 21–40.

[23] Z Berkay Celik, Patrick McDaniel, and Gang Tan. 2018. Soteria: Automated
{IoT} Safety and Security Analysis. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18). 147–158.

[24] Z Berkay Celik, Gang Tan, and Patrick D McDaniel. 2019. IoTGuard: Dynamic
Enforcement of Security and Safety Policy in Commodity IoT.. In NDSS.

[25] Haotian Chi, Chenglong Fu, Qiang Zeng, and Xiaojiang Du. 2022. Delay Wreaks
Havoc on Your Smart Home: Delay-based: Automation Interference Attacks.
In 2022 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society,
1575–1575.

[26] Haotian Chi, Qiang Zeng, Xiaojiang Du, and Jiaping Yu. 2020. Cross-app interfer-
ence threats in smart homes: Categorization, detection and handling. In 2020 50th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN). IEEE, 411–423.

[27] Cláudio Correia, Miguel Correia, and Luís Rodrigues. 2020. Omega: a secure
event ordering service for the edge. In 2020 50th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 489–501.

[28] Victor Costan and Srinivas Devadas. 2016. Intel SGX explained. Cryptology ePrint
Archive (2016).

[29] Asish Kumar Dalai and Sanjay Kumar Jena. 2017. Wdtf: A technique for wireless
device type fingerprinting. Wireless Personal Communications 97, 2 (2017), 1911–
1928.

[30] Christian Dietz, Raphael Labaca Castro, Jessica Steinberger, Cezary Wilczak,
Marcel Antzek, Anna Sperotto, and Aiko Pras. 2018. IoT-botnet detection and
isolation by access routers. In 2018 9th International Conference on the Network of
the Future (NOF). IEEE, 88–95.

[31] Wenbo Ding, Hongxin Hu, and Long Cheng. 2021. IOTSAFE: Enforcing safety and
security policy with real IoT physical interaction discovery. In the 28th Network
and Distributed System Security Symposium (NDSS 2021).

[32] Alaba Ayotunde Fadele, Mazliza Othman, Ibrahim Abaker Targio Hashem, Ibrar
Yaqoob, Muhammad Imran, and Muhammad Shoaib. 2019. A novel countermea-
sure technique for reactive jamming attack in internet of things. Multimedia
Tools and Applications 78, 21 (2019), 29899–29920.

[33] Nick Farina. [n. d.]. homebridge-dummy. https://www.npmjs.com/package/ho
mebridge-dummy. (Accessed on 10/10/2022).

[34] Earlence Fernandes, Amir Rahmati, Kevin Eykholt, and Atul Prakash. 2017. In-
ternet of things security research: A rehash of old ideas or new intellectual
challenges? IEEE Security & Privacy 15, 4 (2017), 79–84.

[35] Chenglong Fu, Qiang Zeng, Haotian Chi, Xiaojiang Du, and Siva Likitha Valluru.
2022. Iot phantom-delay attacks: Demystifying and exploiting iot timeout be-
haviors. In 2022 52st Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE.

[36] Chenglong Fu, Qiang Zeng, and Xiaojiang Du. 2021. HAWatcher: Semantics-
Aware Anomaly Detection for Appified Smart Homes. In 30th USENIX Security
Symposium (USENIX Security 21). 4223–4240.

[37] P Ganeshkumar, KP Vijayakumar, and M Anandaraj. 2016. A novel jammer
detection framework for cluster-basedwireless sensor networks. EURASIP Journal
on Wireless Communications and Networking 2016, 1 (2016), 1–25.

[38] Gigamon. 2016. Understanding network taps – the first step to visibility. https:
//www.gigamon.com/resources/resource-library/white-paper/understanding-
network-taps-first-step-to-visibility.html.

[39] Furkan Goksel, Muslum Ozgur Ozmen, Michael Reeves, Basavesh Shivakumar,
and Z Berkay Celik. 2021. On the safety implications of misordered events and
commands in IoT systems. In 2021 IEEE Security and Privacy Workshops (SPW).
IEEE, 235–241.

[40] Tianbo Gu, Zheng Fang, Allaukik Abhishek, and Prasant Mohapatra. 2020. IoT-
Spy: Uncovering Human Privacy Leakage in IoT Networks via Mining Wireless
Context. In 2020 IEEE 31st Annual International Symposium on Personal, Indoor
and Mobile Radio Communications. IEEE, 1–7.

[41] Danny Yuxing Huang, Noah Apthorpe, Frank Li, Gunes Acar, and Nick Feamster.
2020. Iot inspector: Crowdsourcing labeled network traffic from smart home
devices at scale. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies 4, 2 (2020), 1–21.

[42] Yeonseon Jeong, Hyunghoon Kim, and Hyo Jin Jo. 2022. ASD: ARP Spoofing
Detector Using OpenWrt. Security and Communication Networks 2022 (2022).

[43] Yunhan Jack Jia, Qi Alfred Chen, Shiqi Wang, Amir Rahmati, Earlence Fernandes,
ZhuoqingMorleyMao, Atul Prakash, and SJ Unviersity. 2017. ContexloT: Towards
Providing Contextual Integrity to Appified IoT Platforms.. In NDSS, Vol. 2. San
Diego, 2–2.

[44] Mingyan Li, Iordanis Koutsopoulos, and Radha Poovendran. 2007. Optimal jam-
ming attacks and network defense policies in wireless sensor networks. In IEEE
INFOCOM 2007-26th IEEE International Conference on Computer Communications.
IEEE, 1307–1315.

[45] Yuan Luo, Long Cheng, Hongxin Hu, Guojun Peng, and Danfeng Yao. 2020.
Context-Rich Privacy Leakage Analysis Through Inferring Apps in Smart Home
IoT. IEEE Internet of Things Journal 8, 4 (2020), 2736–2750.

[46] SergeyAMarchenkov, Dmitry GKorzun, Anton I Shabaev, andAnatoly VVoronin.
2017. On applicability of wireless routers to deployment of smart spaces in
Internet of Things environments. In 2017 9th IEEE International Conference on
Intelligent Data Acquisition and Advanced Computing Systems: Technology and
Applications (IDAACS), Vol. 2. IEEE, 1000–1005.

[47] Christoph Mayer. [n. d.]. XArp. http://www.xarp.net/. (Accessed on 09/20/2022).
[48] Markus Miettinen, Samuel Marchal, Ibbad Hafeez, N Asokan, Ahmad-Reza

Sadeghi, and Sasu Tarkoma. 2017. Iot sentinel: Automated device-type identifica-
tion for security enforcement in iot. In 2017 IEEE 37th International Conference
on Distributed Computing Systems (ICDCS). IEEE, 2177–2184.

[49] Danh Nguyen, Cem Sahin, Boris Shishkin, Nagarajan Kandasamy, and Kapil R
Dandekar. 2014. A real-time and protocol-aware reactive jamming framework
built on software-defined radios. In Proceedings of the 2014 ACM workshop on
Software radio implementation forum. 15–22.

[50] Andrea Di Pasquale. 2016. ArpON. https://arpon.sourceforge.io/. (Accessed on
09/20/2022).

[51] Konstantinos Pelechrinis, Marios Iliofotou, and Srikanth V Krishnamurthy. 2010.
Denial of service attacks in wireless networks: The case of jammers. IEEE
Communications surveys & tutorials 13, 2 (2010), 245–257.

[52] Alan Reed. 2017. ARP-Defense. https://github.com/aarreedd/ARP-Defense.
(Accessed on 09/20/2022).

[53] Mustafizur R Shahid, Gregory Blanc, Zonghua Zhang, and Hervé Debar. 2018. IoT
devices recognition through network traffic analysis. In 2018 IEEE international
conference on big data (big data). IEEE, 5187–5192.

[54] Amit Kumar Sikder, Leonardo Babun, Hidayet Aksu, and A Selcuk Uluagac.
2019. Aegis: A context-aware security framework for smart home systems. In
Proceedings of the 35th Annual Computer Security Applications Conference. 28–41.

[55] Statista. [n. d.]. Smart home device penetration in the U.S. 2021. https://www.st
atista.com/statistics/1247351/smart-home-device-us-household-penetration/.
(Accessed on 12/01/2022).

[56] Alanoud Subahi and George Theodorakopoulos. 2019. Detecting IoT user behav-
ior and sensitive information in encrypted IoT-app traffic. Sensors 19, 21 (2019),
4777.

[57] Rahmadi Trimananda, Janus Varmarken, AthinaMarkopoulou, and Brian Demsky.
2020. Packet-level signatures for smart home devices. In Network and Distributed
Systems Security (NDSS) Symposium, Vol. 2020.

[58] VERACODE. 2021. ARP Spoofing. https://www.veracode.com/security/arp-
spoofing.

[59] Sean Whalen. 2001. An introduction to arp spoofing. Node99 [Online Document]
(2001).

[60] Kai Yang, Qiang Li, and Limin Sun. 2019. Towards automatic fingerprinting of
IoT devices in the cyberspace. Computer Networks 148 (2019), 318–327.

[61] Lingjing Yu, Bo Luo, JunMa, Zhaoyu Zhou, and Qingyun Liu. 2020. You AreWhat
You Broadcast: Identification of Mobile and {IoT} Devices from (Public){WiFi}.
In 29th USENIX Security Symposium (USENIX Security 20). 55–72.

[62] Wei Zhang, Yan Meng, Yugeng Liu, Xiaokuan Zhang, Yinqian Zhang, and Haojin
Zhu. 2018. Homonit: Monitoring smart home apps from encrypted traffic. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. 1074–1088.

A IMPLEMENTATION OF MP-MEDIATOR
The Main Body of MP-Mediator. In recent years, a lot of open-
source smart home hubs and platforms have emerged to provide
users with more choices for building their own smart home au-
tomation systems, such as openHAB [11], Home Assistant [6],
Homebridge [7], ioBroker [10] and so on. These emerging hubs
and platforms can be deployed on a local PC or laptop to realize
local control of IoT devices, and also facilitate the integration of
various IoT devices that use different communication technologies
(e.g., Bluetooth, Zigbee, Z-Wave, and Wi-Fi). Since Homebridge
has a very active community that continuously contributes useful
integration (i.e., Homebridge plugins), we choose to use it in our
implementation for the main body of MP-Mediator. By now, over
2,000 Homebridge plugins are available to the public, supporting
thousands of different IoT devices [7]. The virtual devices men-
tioned in Section 5.2 and Section 5.3 can be created by using one of
the Homebridge plugins [33]. Homebridge was originally developed
for HomeKit [8], which allows users to use plugins to integrate
with smart devices that do not natively support HomeKit. Later,

59

https://www.npmjs.com/package/homebridge-dummy
https://www.npmjs.com/package/homebridge-dummy
https://www.gigamon.com/resources/resource-library/white-paper/understanding-network-taps-first-step-to-visibility.html
https://www.gigamon.com/resources/resource-library/white-paper/understanding-network-taps-first-step-to-visibility.html
https://www.gigamon.com/resources/resource-library/white-paper/understanding-network-taps-first-step-to-visibility.html
http://www.xarp.net/
https://arpon.sourceforge.io/
https://github.com/aarreedd/ARP-Defense
https://www.statista.com/statistics/1247351/smart-home-device-us-household-penetration/
https://www.statista.com/statistics/1247351/smart-home-device-us-household-penetration/
https://www.veracode.com/security/arp-spoofing
https://www.veracode.com/security/arp-spoofing

MP-Mediator: Detecting and Handling the New Stealthy Delay Attacks on IoT Events and Commands RAID ’23, October 16–18, 2023, Hong Kong, China

Homebridge
MQTT plugin

Homebridge
Mosquitto

MQTT broker

Zigbee2MQTT

Z-Wave JS UI

Figure 7: A MQTT broker is used to connect Zigbee and Z-
Wave devices to Homebridge.

Homebridge has been greatly extended to work with several cloud
integration platforms, such as SmartThings [14], Amazon Alexa [1],
and IFTTT [9]. In our implementation, MP-Mediator runs on a
laptop with Ubuntu 20.04 LTS, and a two-core Intel(R) Core(TM)
i5-5200U CPU. In general, MP-Mediator can run on any computing
device (e.g., a Raspberry Pi) as long as Homebridge is supported.
Besides, we use a SONOFF Zigbee 3.0 USB Dongle Plus [15] and a
GoControl HUSBZB-1 USB Stick [4] to extend Zigbee and Z-Wave
capabilities for MP-Mediator, respectively.

Connecting Devices on CDwAPI-VC. For IoT devices that only
have cloud APIs, they cannot be directly connected to the Device
Manager without going through their vendor cloud servers. Fortu-
nately, there are plenty of Homebridge plugins available for these
devices. During the configuration stage of a cloud API-based plugin,
the user enters the username and password of her account that is as-
sociated with the device, in order to pass the authentication process
enforced by the cloud server. For some devices, two-factor authen-
tication is required. As shown in Figure 5, a device on CDwAPI-VC
sends an event to its vendor cloud and its state is updated on the
vendor cloud accordingly. In order to keep the device status up-
to-date on MP-Mediator, the device plugin utilizes cloud APIs to
periodically poll the device status from the vendor cloud server. If
MP-Mediator needs to send a command to a device on CDwAPI-VC,
the Device Manager first sends a request to the vendor cloud using
its cloud APIs. Then the cloud server processes the request and
issues the command to the target device if it finds the request to be
legitimate.

Connecting Devices on CDwoAPI-VC. These devices cannot
be connected to the Device Manager (or any other device), be-
cause they do not have local or cloud APIs. To address this issue,
we propose to use virtual devices and virtual rules. For each de-
vice connected on CDwoAPI-VC, a virtual device is created on MP-
Mediator and a virtual rule is also generated on the integration
platform to establish a correspondence between the physical device
and the virtual device. A state change of the physical device is
reflected by the virtual device on MP-Mediator using a virtual rule,
so that MP-Mediator is aware of the occurrence of device events
on CDwoAPI-VC. More details about the usage of virtual devices
and virtual rules are presented in Section 5.2.

ConnectingWi-Fi Devices with Local APIs on LD-MPM. More
and more Wi-Fi devices are built with local APIs to enable direct
device-to-device communications with other devices in the same
home local area network, which protects the user’s privacy by con-
ducting inter-device interactions using only local traffic, and also

improves a user experience by reducing the latency and provid-
ing basic system operability when Internet access is unavailable.
Though some of the IoT vendors do not release official local APIs,
the active community manages to dig out many local APIs by re-
verse engineering and then shares them with the public, which
facilitates the development of Homebridge plugins to integrate IoT
devices based on local APIs.

Usually, there is more than one local API-based plugin available
for a device on LD-MPM. We choose to use plugins that have been
verified since verified plugins are reviewed and endorsed by the
Homebridge project team, making them more reliable and trust-
worthy.

Connecting Zigbee and Z-Wave Devices on LD-MPM. As illus-
trated in Figure 7, instead of directly connecting Zigbee/Z-Wave
devices to Homebridge, we utilize a Message Queuing Telemetry
Transport (MQTT) broker as a relay. The MQTT broker is created
using the open-source project Mosquitto [3] and is hosted on the
same computer as MP-Mediator. Besides, we adopt two gateway
applications, Zigbee2MQTT [17] and Z-Wave JS UI [16] (formerly
ZWavejs2MQTT), which convert Zigbee and Z-Wave protocols to
MQTT, respectively. After conversion, the gateway applications
publish device event messages to the MQTT broker. In addition, a
Homebridge MQTT plugin is used on MP-Mediator for receiving
desired MQTT messages from the MQTT broker by subscribing
to some specific event topics and MP-Mediator updates the device
status accordingly. On the other hand, the Homebridge MQTT plu-
gin publishes control commands to the MQTT broker if there is
any command that needs to be sent to target devices. The gateway
applications receive the desired commands by subscribing to some
command topics and then convert the messages from MQTT to
Zigbee/Z-Wave protocols. Finally, the target devices receive the
commands and execute them.

Integration with SmartThings. For the IoT devices that have
been connected with MP-Mediator, we connect them to the Smart-
Things platform using SmartThings Schema provided by Smart-
Things. SmartThings provides a list of pre-defined device handler
types and each device using SmartThings Schema must be associ-
ated with one of them. A device handler type is essentially the
profile of a device, indicatingwhat capabilities the device has. For ex-
ample, a device with the handler type c2c-contact implies three ca-
pabilities: Contact Sensor, Battery, Temperature Measurement.

After a successful authentication and authorization process,
SmartThings sends discoveryRequest to MP-Mediator to request
a list of existing devices on MP-Mediator. We need to abstract each
device to one of the device handler types based on its capabili-
ties and then wrap up the information of all devices in the required
format as discoveryResponse, which is sent back to SmartThings.
Every time the Device Manager receives a device event from the
connected device, the Platform Interface forwards the event to
SmartThings to update the device status on the SmartThings plat-
form. When the SmartThings platform issues a command to the
target device, it sends commandRequest to the Platform Interface,
which processes the request. Then the Device Manager issues the
command to the indicated device.

60

RAID ’23, October 16–18, 2023, Hong Kong, China Xuening Xu, Chenglong Fu, and Xiaojiang Du

Table 11: Overhead introduced by MP-Mediator.

Unit: millisecond Min Max Mean Median Upper Quartile

Event 250 272 264 264 266
Command 45 634 155 95 199

Cloud-connected
Devices with APIs

Vendor Cloud Vendor Cloud

MP-Mediator

Without MP-Mediator With MP-Mediator

Cloud-connected
Devices with APIs

VC-MPMCDwAPI-VCCDwAPI-VC

(a) Cloud-connected devices with cloud APIs.

Smart
Home Hub

Local-connected
Devices

Local-connected
Devices

Without MP-Mediator With MP-Mediator

MP-Mediator
LD-MPMLD-MPM

(b) Local-connected devices with local APIs.

Figure 8: The difference in connection with and without MP-
Mediator. Solid arrows present event flows and hollow arrows
present command flows.

Integration with IFTTT. Different from the SmartThings plat-
form, IFTTT is an automation tool that connects different services
as triggers and actions, instead of maintaining or managing devices
on the cloud server. Therefore, we are not required to provide the
connected devices to IFTTT. We only need to handle requests that
are sent to the Platform Interface from IFTTT when it wants to
access the devices that are connected to MP-Mediator. Specifically,
when a trigger event occurs, instead of directly pushing the event
to IFTTT, the Platform Interface notifies IFTTT of the unique ID of
the device that generates the event, indicating the change of the
device status. Shortly after receiving the notification, IFTTT sends
a request to confirm the change of the device status. If confirmed,
according to the defined automation rules, IFTTT issues a com-
mand request to the Platform Interface. The Device Manager sends
the command to the target device after the command request is
successfully processed.

B OVERHEAD OF MP-MEDIATOR
According to [39], the typical processing time and network latency
between an IoT device and its cloud server are several seconds. For
MP-Mediator, we measure the processing overhead and communi-
cation overhead, and present the results in the following. Note that
MP-Mediator does not affect unrelated network traffic other than
devices that are connected to it.
ProcessingOverhead. MP-Mediator sits in-between IoT platforms
and IoT devices connected via LD-MPM or CDwAPI-VC. First, MP-
Mediator needs to process event messages from IoT devices (or
command messages from IoT platforms to devices), and then it
forwards the processed events and commands to their destinations.
Here we evaluate the overhead introduced by MP-Mediator for

Table 12: Communication overhead on VC-MPM.

Unit: second Min Max Mean Median Upper Quartile

Event 0.502 1.875 1.112 1.086 1.346
Command 0.527 2.395 1.039 0.958 1.151

Table 13: Comparison of overhead on LD-MPM.

Unit: second Control Center Min Max Mean Median Upper Quartile

Event Smart Home Hub 0.037 0.151 0.081 0.077 0.101
MP-Mediator 0.272 1.389 0.981 1.032 1.152

Command Smart Home Hub 0.055 0.222 0.107 0.091 0.137
MP-Mediator 0.048 0.249 0.151 0.156 0.178

processing events and commands. Specifically, we evaluate: 1) the
time between MP-Mediator receiving an event and forwarding
the event to the IoT platform; 2) the time between MP-Mediator
receiving a command and forwarding the command to the target
device. We trigger events from an IoT device 50 times, and issue
commands to the IoT device 50 times from an IoT platform.

The measuring results are given in Table 11. The time of pro-
cessing events is relatively stable (around 260 milliseconds), which
fluctuates within a small range. For processing commands, the over-
head varies from 45 to 600+ milliseconds, with a mean value of
155 milliseconds. Compared to the several seconds of processing
time and network latency between IoT devices and servers [39],
the overhead of the MP-Mediator processing is negligible.
Communication Overhead. The Device TrafficMonitor redirects
network flows between cloud-connected devices and their vendor
cloud servers, which adds a small overhead (less than 200 millisec-
onds). Besides, MP-Mediator requires to obtain device events either
from cloud servers (i.e., devices with cloud APIs) or from devices
directly (i.e., devices with local APIs), which introduces communi-
cation overhead compared to the original connection without using
MP-Mediator. The difference in connection is shown in Figure 8. We
do not measure communication overhead for the devices without
APIs since their events do not go through MP-Mediator.

For cloud-connected devices in Figure 8(a), an extra communi-
cation link (i.e., VC-MPM) is added between MP-Mediator and the
vendor cloud in order for MP-Mediator to poll device status from
and send commands to the vendor cloud using cloud APIs. During
the measurement, we poll the device status 50 times and send com-
mands to a device 50 times. The measured communication overhead
is reported in Table 12. The average communication overhead of
event is slightly greater than 1 second, with the minimum of only
half a second. The communication overhead on command is also
small with the minimum being 0.527 seconds and most of them
are around 1 second (upper quartile is 1.151 seconds). It is worth
noting that the original connection (i.e., without MP-Mediator)
only connects devices to their vendor cloud and some devices (e.g.,
SimpliSafe security system) cannot be integrated with third-party
platforms such as the SmartThings platform. MP-Mediator provides
the ability to connect such devices to other third-party platforms,
with acceptable communication overhead on VC-MPM.

For local-connected devices shown in Figure 8(b), using MP-
Mediator does not add any extra communication link. Therefore,

61

MP-Mediator: Detecting and Handling the New Stealthy Delay Attacks on IoT Events and Commands RAID ’23, October 16–18, 2023, Hong Kong, China

we compare the communication overhead on LD-MPM for the two
scenarios and the results are reported in Table 13. For Event, MP-
Mediator only adds about 1 second overhead, which will not affect
the normal operation of smart homes (e.g., automation rules). For
command, the communication overhead is similar when using a
smart home hub and the MP-Mediator, and it is no more than 0.25
seconds.

C JAMMING ATTACKS
Jamming attacks [19, 22, 44, 49, 51] have been widely studied, in-
cluding constant, deceptive, random, and reactive jamming, where
reactive jamming is the most challenging attack and also more dan-
gerous than other jamming attacks in terms of performance [37].

The jammer in a reactive jamming attack remains silent at ordinary
times and sends jamming signals only when it detects a device
is sending packets to other devices, causing a collision to destroy
packet transmission, which makes messages (e.g., IoT device events
and commands) fail to be delivered to the destinations. Countermea-
sure Detection and Consistency Algorithm (CDCA) is proposed in
[32] as a countermeasure against reactive jamming attacks on IoT
networks, which measures the amount of time spent waiting for the
channel to be idle and also checks the consistency of packet signal
strength and device location. However, the delay attacks neither
cause the channel busy nor affect the signal strength of transmitted
packets. Thus, CDCA also fails to detect the delay attacks.

62

	Abstract
	1 Introduction
	2 Background
	2.1 Smart Home Systems
	2.2 Analyzing Encrypted Traffic
	2.3 Delay Attacks on IoT Events and Commands

	3 Attack Model
	4 System Overview
	4.1 Overview of MP-Mediator
	4.2 Device Traffic Monitor
	4.3 Device Manager
	4.4 Platform Interface

	5 MP-Mediator: Detecting and Handling of Delay Attacks
	5.1 Analysis of Three Attack Methods
	5.2 Detection of Delay Attacks
	5.3 Handling Delay Attacks
	5.4 Defense Against Aggressive Attacks

	6 Evaluation
	6.1 The Smart Home Testbed
	6.2 Determining the Timing Thresholds
	6.3 Device Timeout Behaviour
	6.4 Performance of Detecting Delay Attacks
	6.5 Performance of Handling Delay Attacks

	7 Related Work
	8 Discussion
	9 Conclusion
	Acknowledgments
	References
	A Implementation of MP-Mediator
	B Overhead of MP-Mediator
	C Jamming Attacks

