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Abstract—Security within the internet of things suffers from
balancing power consumption and memory usage in devices. We
propose two protocols that aim to reduce these strains while
maintaining effective security through symmetric keys. Our first
protocol takes a user-level approach for fine-tuned access control
over advanced operations between a device and its installed
software. Our second protocol allows for flexibility between the
energy and memory tradeoff for network designers along with
a dynamic bootstrapping mechanism for an already established
network.

Index Terms—IoT, access control, energy efficient

I. INTRODUCTION

The internet of things (IoT) has seen great development in
recent years and has been widely adapted throughout modern
society for civil, health, and militaristic means [2]. One of the
major applications of IoT has been the area of wireless sensor
networks (WSNs), which has been studied over the years [5],
[7], [21]. However, the devices within these networks are often
limited in functionality due to their power and memory con-
straints. These constraints limit both the internal and external
security of WSN devices, allowing for breaches in both the
confidentiality and authenticity of information gathered from
a WSN [14]. Several previous works designed protocols that
consider the constraints and can improve the performance of
WSNs [4], [6]. However, it is still a challenge regarding how
to achieve security for resource-constraint IoT.

The limitations of these devices can negatively impact their
internal security, reducing their ability to screen installed
software. This limited evaluation allows software to abuse the
device through unnecessary and dangerous permission ratifi-
cation. These acquired permissions could lead to the potential
access and dissemination of privileged information, causing
serious harm to those depending on the confidentiality of the
IoT device [22]. In addition, these limitations can adversely
impact the external security of WSNs, allowing for the WSN
to be vulnerable to both passive and active attacks, inhibiting
the confidentiality and authenticity of communication between
nodes [3].

To combat the burdens brought on by the power and mem-
ory constraints of these devices, we propose two symmetric
protocols. The first deals with the internal security of a device
and its software, while the second deals with external security
between nodes in a WSN. Our internal software protocol
dispatches a unique secret key, which is constructed from

an approved set of permissions, to an installed software. The
external protocol makes use of a set of three one-way key
functions to securely bootstrap nodes into a WSN, while also
providing secure communication within a WSN through a top-
down methodology.

II. DESIGN AND IMPLEMENTATION

Both our single node and multi node protocols operate
using symmetric keys in combination with the AES encryption
algorithm and the SHA256 hashing algorithm. The AES
encryption algorithm was chosen due to its low-memory
overhead, relatively fast total encryption time, and robustness
in security [19]. The SHA256 hashing algorithm was selected
for both basic hashing as well as HMAC generation due to its
computational efficiency and reliability in security [8].

A. Single Node Protocol

The single node protocol securely authorizes requested
software permissions over the application layer. This protocol
is designed as a user-space program to allow for more fine-
tuned control over installed software and their actions. Our
single node protocol was developed to function within the
architecture of a microkernel, such as seL4, which relies
on user-level system composition for functionality [18]. The
operation for this protocol is outlined in a sequential manner
within Table I. To avoid replay attacks all messages are
encrypted with a timestamp, which is always checked for
timeliness and redundancy.

The protocol assumes that both the installed software
(agent) and dominant process (authorizer) share a secret key. In
addition, the authorizer has its own master key. The agent first
must initialize itself within a device by requesting a set of base
permissions. This request is encrypted by the shared secret
key and sent to the authorizer. Upon receiving the request, the
authorizer decrypts the message and validates the requested
permissions, timestamp of the message, and ID of the agent.
The authorizer then creates an HMAC using SHA256 with
its master key and the approved permission vector. This hash
is then encrypted along with the current time. The authorizer
stores the computed hash along with the approved permissions.
The encrypted hash is sent as a response to the agent and is
decrypted and stored for future encryption.

When the agent needs to perform an action requiring
permissions, it sends an action request to the authorizer. The
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TABLE I
SINGLE NODE EXECUTION ORDER

Time Authorizer Agent Description
T0 Km, K1 K1 The authorizer and agent are initialized with shared secret keys. The authorizer also has a master key.
T1 - Req(AESK1 (Perms, ID, time)) Each agent sends an encrypted permission request to the authorizer.
T2 Perms, ID, time - Authorizer decrypts each request.

T3 isValid(Perms) - Authorizer performs a validity check to see if the agent should be granted the requested permissions.
The isValid() function is incomplete as it is based on our unfinished deep learning classifier.

T4
SHA256Km (ID, Perms)

= KApp
- The authorizer generates a hash which serves as the secret key for Node. The authorizer then stores

the requested permissions & corresponding KAppi.
T5 Response(AESK1 (KApp, time)) - The authorizer returns the generated secret key wrapped in encryption.
T6 - AESK1 (KApp, time) The agent receives the encrypted hash.
T7 - KApp1, time The agent decrypts the wrapper to retrieve the generated hash.

T8 -
(ID, MessageType,

AESKApp (time, action,
Permsdesired), HMAC)

The agent sends a message using the generated hash to encrypt a requested action and the required
permissions. An HMAC using SHA256KApp is generated to preserve the authenticity of the plain text.

T9 ID, time, action, Permsdesired - The authorizer checks the authenticity of the HMAC and decrypts the message to retrieve the
contents using its stored KApp.

T10 Permsdesired ≤ Permsorig - The authorizer checks if the needed permissions are a subset of the approved initialization permissions.
T11 Perform Action - If the permissions are valid, the root performs the requested action for the agent.
T12 AESKApp1 (Approval, time) - The authorizer creates encrypted response to notify the agent that the requested action was approved.
T13 - Approval The agent decrypts the response and checks whether approval was given.

Fig. 1. Keychain generation visualized.

action request consists of the agent’s ID and message type
in cleartext along with the time, desired action, and needed
permissions, which are encrypted using the stored hash and
AES algorithm. This is wrapped using a computed HMAC to
preserve authenticity of the clear text. This message is sent to
the authorizer who then checks the authenticity and decrypts
the message using the stored hash. The desired permissions
are compared to the original approved permissions. If they
are a subset, the authorizer performs the action for the agent
or instructs a privileged process to perform the action. The
authorizer then notifies the agent of the approval status of the
action with an encrypted Boolean response and timestamp.

B. Multi Node Protocol

The multi node protocol dynamically bootstraps nodes into
an established wireless sensor network with secure symmetric

communication capabilities. This protocol is designed to take
advantage of the common tiered structure of distributed WSNs
i.e. clustering of nodes and formulated cluster heads [11]. This
protocol allows for flexibility in the tradeoff between memory
use and power consumption. This tradeoff can be shifted by
restricting the number of child keys cached within a parent
node. A step-by-step execution of the protocol can be seen in
Table II.

The multi node protocol depends on three separate one-
way keychains in implementation. The main keychain, as
specified in Table II by K0, serves as the base secret key that
will be transformed into all child secret keys. The secondary
keychains, as denoted in Table II by Mrow and Mcol, allow
for the isolated manipulation of the base secret key across
children on different levels within the network. The keychain
generated by Mcol allows for a parent to generate secret keys
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TABLE II
MULTI NODE EXECUTION ORDER

Time Ancestor Descendant Description

T0 K0, Mrow, Mcol K0, M′
row, M′

col

The parent is initialized with the first key for each of the three keychains. Each successive node in the
network receives their own initialization parameters that are determined by the hashing of the original
chain and their location within the network.

T1 - SHA256(K0, position, time)
= HMAC1

The child generates an HMAC using its secret key, position in the network, and a timestamp.

T2 - Validation(position, time,
HMAC1)

The child constructs a validation request for its parent containing its position and the timestamp with
the HMAC appended.

T3
Find Key(position, K0, Mrow,

Mcol) = K Gen0
- The parent uses its base parameters along with the disclosed position of the child to generate the

child’s secret key. The parent can choose to cache this key based on memory and power constraints.

T4
SHA256(K Gen0, position,

time) == HMAC1
- The parent checks the authenticity of the child by hashing the received parameters and validating that

they match the supplied HMAC.

T5
SHA256(K Gen0, validity,

time) == HMAC2
- The parent generates an HMAC using the generated secret key, validity of the child’s request, and a

timestamp.

T6
Validation(validity, time,

HMAC2) - The parent constructs a validation response for its child containing the determined validity and the
timestamp with the HMAC appended.

T7 - SHA256(K0, validity,
time) == HMAC2

The child checks the authenticity of the parent by hashing the received parameters and validating that
they match the supplied HMAC. If they match, then the parent and child have now established a
secure line of communication.

T8 -

SHA256(K0, data, time)
= HMAC3

OR AESK0 (data, time)
= E message

The child creates a message from collected data using SHA256 hashing or AES encryption depending
on the sensitivity of the data.

T9 - Report(data, time, HMAC3)
OR Report(E message) The child sends either the hashed or encrypted data as a report to its parent.

T10

SHA256(K Gen0, data, time)
== HMAC3 OR

Dec(E message) == data, time
- The parent receives and validates/decrypts the hashed/encrypted message using the cached key. The

data is now authenticated and ready to be acted upon.

T11
SHA256(K Gen0, OK, time)

= HMAC4
- The parent constructs a HMAC using the child’s secret key, indication of whether the child can

continue sending, and a timestamp.

T12
Continue(K Gen0, OK, time)

= HMAC4
-

The parent appends the HMAC to the message and sends it to the child when ready. This step is used
for flow control as well as indicating to the child whether they should re-instantiate a connection with
the parent to reestablish a secret key.

T13 - SHA256(K0, OK, time)
== HMAC4

The child receives the message and validates the HMAC’s authenticity. Based on the response, the
child will send messages or reestablish its secret key.

Fig. 2. Keychain generation code example.

corresponding to specific generations below them. In Figure 1,
each generation is labeled as a separate level. The keychain
generated by Mrow allows for a parent to generate secret keys
corresponding to siblings within the same generation. These
siblings are within the same level as depicted in Figure 1. The
combination of Mrow and Mcol isolate sibling nodes within a
network, allowing only a direct ancestor to generate a descen-
dant’s key. To generate a descendant’s key, the ancestor feeds
its initialization parameters, along with the child’s relative
location, through the code snippet seen in Figure 2. The
modified base keys for the three keychains are stored within

Fig. 3. Single node process architecture.

the descendant for the bootstrapping process. This protocol
assumes that a third party has access to the initialization
parameters of all three keychains within the base station.
Therefore, this party can add new nodes to an established
network by simply generating their initialization file.

To bootstrap into the WSN, a child node constructs a
HMAC, using the secret key Ki found in its initialization file,
for a message containing its position in the network and a
timestamp. This message and HMAC are sent to its suspected
parent. Upon receiving the message, the parent ensures that
the disclosed location of the child is valid and that it can be a
descendant. Next, the parent will obtain its own secret keys, Kj,
Mj

row, and Mj
col and use the child’s relative disclosed location

in the WSN to generate the child’s secret key. This process of
obtaining a child’s key can be seen below in Figure 2. Once
the child’s key is generated, the parent validates the HMAC
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TABLE III
SINGLE NODE EXECUTION RATES

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6
Number of Processes 2 3 4 5 6 11
Average Execution (s) 0.004383611 0.005209468 0.007668551 0.010009681 0.012502742 0.024012095
Min Execution (s) 0.003637075 0.0037148 0.003685951 0.003690004 0.00365591 0.003652811
Max Execution (s) 0.026875973 0.032971859 3.156201839 7.183223009 3.151322126 7.218795061
Total Execution 46,000 79,000 75,000 76,000 67,500 80,000
Bits Transferred 117,129,984 201,139,256 190,934,528 193,525,296 171,896,000 203,718,648
Run Time (s) 202.5455861 206.593955 192.2491777 190.5893332 169.073019 192.2684983
Effective Throughput (b/s) 578,289.49 973,597.01 993,161.74 1,015,404.65 1,016,696.82 1,059,552.92
Executions Per Second 227.1093677 382.3926019 390.1187038 398.7631349 399.2357882 416.0848017

TABLE IV
SINGLE NODE ENERGY & MEMORY CONSUMPTION

Processes VIRT (KB) RES (KB) SHR (KB) %CPU ENERGY CONS. (W) %MEM MEM USAGE (KB) TIME+ (S)
Exp 1 2 26,360 17,332 11,440 106.4394 0.612026806 1.8 17,069 206.08
Exp 2 3 40,260 26,313 17,142 198.7411 1.142761389 2.702222 25,625 380.99
Exp 3 4 54,160 35,233 22,709 211.0277 1.213409235 3.620169 34,330 384.72
Exp 4 5 68,060 44,168 28,448 220.2258 1.266298626 4.5 42,674 401.85
Exp 5 6 81,960 52,884 33,848 229.0062 1.316785426 5.4 51,208 401.41
Exp 6 11 151,460 97,336 61,789 251.2487 1.444679851 10.01999 95,020 442.44

TABLE V
SINGLE NODE PACKET STATISTICS

Processes Total Packets Time (s) Average PPS Average packet size (B) Total Bytes Average kB/s Average kb/s
Exp 1 2 477,793 192.816 2,478 97 46,165,970 239 1,915
Exp 2 3 755,238 190.938 3,955 98 74,103,494 388 3,104
Exp 3 4 759,423 187.617 4,048 100 76,192,395 406 3,248
Exp 4 5 780,231 193.766 4,027 100 78,317,587 404 3,233
Exp 5 6 763,282 186.297 4,097 100 76,634,012 411 3,290
Exp 6 11 829,648 203.487 4,077 101 83,530,582 410 3,283

of the child’s message, proving the legitimacy of the child.
Next, the parent caches the child’s secret key, and responds

to the child with its own message and HMAC. This HMAC
was generated using the child’s key, so that the child may
also validate the legitimacy of the parent. A secure line of
communication has been established once both the parent and
child have validated each other.

Now that both nodes have been authenticated, the descen-
dant can forward collected sensor data to the parent. This data
can be sent using either AES encryption or a SHA256 HMAC
depending on the sensitivity of the collected information.
Regardless of the form, the parent will always respond with
a message and HMAC after receiving and processing the
data. This response serves to notify the child of successful
correspondence and to regulate the flow of incoming data from
the parent’s children.

III. PERFORMANCE EVALUATION

Both the single node protocol and the multi node proto-
cols were evaluated on the Raspberry Pi 3B over a set of
six experiments with varying network architectures. Linux’s
top command was used to measure statistics such as the
total execution time, energy consumption, and memory usage.
Wireshark, an open source packet capture application with ad-
vanced capabilities and statistical analyses of packet transfer,
was used to gather various measurements regarding packet
delivery and bitrate [15].

Fig. 4. Multi node network architecture.

Table III and Table VI display the execution rates for
their corresponding protocol. For our single node protocol,
an execution is measured after the bootstrapping phase, i.e.
timestep eight to thirteen within Table I. For the multi node
protocol, an execution is also measured after bootstrapping:
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TABLE VI
MULTI NODE EXECUTION RATES

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6
Number of Processes 2 3 4 3 4 4
Average Execution (s) 0.009273741 0.009830033 0.00991102 0.009742714 0.011328294 0.011487879
Min Execution (s) 0.003154039 0.003211975 0.003166914 0.003123045 0.00323391 0.00324297
Max Execution (s) 0.875487089 0.930810213 0.979777098 0.913099051 1.417691946 1.611480951
Total Execution 25,500 54,000 66,000 44,000 66,000 66,000
Bits Transferred 29,532,592 62,551,848 763,762,24 50,948,240 76,456,792 76,453,344
Run Time (s) 236.7227559 265.6658971 218.2473479 214.5581549 249.4259726 252.9443073
Effective Throughput (b/s) 124,756.03 235,453.06 349,952.59 237,456.55 306,531.00 302,253.67
Executions Per Second 107.7209494 203.2628222 302.409173 205.0726061 264.607568 260.9270029

TABLE VII
MULTI NODE ENERGY & MEMORY CONSUMPTION

NODE VIRT (KB) RES (KB) SHR (KB) %CPU ENERGY CONS. (W) %MEM MEM USAGE (KB) TIME+

Exp 1 bm 1 41,620 8,892 5,648 14.1511111111 0.08 0.9 8,535 0:32.52
b 1m 17,212 9,564 6,104 18.2172222222 0.10 1.0 9,483 0:40.09

Exp 2
b 12m 17,208 9,640 6,180 17.3916666667 0.10 1.0 9,483 0:39.55
bm 12 50,840 8,828 5,584 26.1216666667 0.15 0.9 8,535 0:56.98
b 1m2 17,212 9,584 6,124 17.0011111111 0.10 1.0 9,483 0:44.80

Exp 3

bm 123 60,060 8,924 5,680 40.8422222222 0.234842778 0.9 8,535 1:30.61
b 123m 17,212 9,660 6,200 17.135 0.09852625 1.0 9,483 0:49.23
b 12m3 17,212 9,524 6,064 17.7438888889 0.102027361 1.0 9,483 0:43.74
b 1m23 17,212 9,488 6,028 17.3172222222 0.099574028 1.0 9,483 0:48.07

Exp 4
bm 1 1 41,620 8,868 5,624 13.885 0.07983875 0.9 8,535 0:28.36
b 1 1m 17,212 9,568 6,108 17.4394444444 0.100276806 1.0 9,483 0:43.91
b 1m 1 44,872 9,108 5,808 30.1994444444 0.173646806 1.0 9,483 1:10.36

Exp 5

bm 12 1 50,840 8,952 5,708 23.6883333333 0.136207917 0.9 8,535 0:52.72
b 12 1m 17,208 9,548 6,084 16.4366666667 0.094510833 1.0 9,483 0:43.64
b 1m2 1 44,872 9,068 5,768 23.6472222222 0.135971528 1.0 9,483 0:59.30
b 12m 1 17,212 9,524 6,064 14.5077777778 0.083419722 1.0 9,483 0:39.23

Exp 6

b 1 12m 17,212 9,664 6,204 16.0627777778 0.092360972 1.0 9,483 0:41.23
b 1m 12 54,088 9,588 6,052 33.0027777778 0.189765972 1.0 9,483 1:18.57
b 1 1m2 17,208 9,648 6,184 14.6272222222 0.084106528 1.0 9,483 0:37.58
bm 1 12 41,620 8,952 5,708 11.2972222222 0.064959028 0.9 8,535 0:27.63

TABLE VIII
MULTI NODE PACKET STATISTICS

Total Packets Time (s) Average PPS Average packet size (B) Total Bytes Average kB/s Average kb/s
Exp 1 50,075 232.386 215.5 204 10,239,951 44 352
Exp 2 106,631 259.668 410.6 204 21,796,497 83 671
Exp 3 176,728 291.176 606.9 204 36,130,952 124 992
Exp 4 71,637 200.905 356.6 204 14,637,014 72 582
Exp 5 144,060 269.001 535.5 204 29,439,035 109 876
Exp 6 139,761 264.624 528.1 204 28,547,547 107 863

timestep eight to thirteen in Table II. The effective throughput
within these tables is a measurement of the user-level bits sent
over a socket without the added headers of lower-level network
protocols.

Table IV and Table VII show the energy consumption
and memory usage for each protocol. To compute these
values, Linux’s Top command was used for 180 iterations
with one second splits. Only one device is monitored in
the single node protocol, therefore, authorizers and agents
had their measurements averaged and summed together for
total usage on the device. For the multi node protocol, each
node is on a separate device, therefore the device averages
are independent of each other. Our %CPU measurement was
converted to a measurement of energy consumption by obtain-
ing the difference in energy consumption (2.3W) between a
Raspberry Pi 3B with 400% CPU Load (3.7W) and an idle
PI (1.4W) [1]. This 2.3W difference was then multiplied by
the ratio of average %CPU over maximum %CPU (400%)

to obtain an energy consumption value. To calculate memory
usage, the average %MEM was multiplied by the free memory
of the corresponding Pi which is listed using the Free Linux
command.

Table V and Table VIII show the bit rate during each
experiment. These values were obtained through Wireshark
and factor in for the added headers from lower level commu-
nication protocols.

A. Single Node

Our single node protocol was evaluated through a set of
six experiments on a single device. Figure 3 illustrates the
architecture of each experiment. There is one authorizer for all
experiments and the gradual introduction of additional agents.
However, experiment six increases substantially in the number
of agents at eleven.

Table III shows that both the execution rate and the effective
throughput increased substantially from experiment two to
experiment three (one agent to two). However, each successive
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experiment had only a slight increase in execution rate and
effective throughput. This large jump from experiment one to
two is most likely due to the underuse and idling of the Rasp-
berry Pi. Whereas the gradual increase from experiment 2 and
onwards more closely reaches the Raspberry Pi’s processing
limit. Table IV supports this theory as there is a large jump
from 106% CPU to 198% CPU from experiment one to two
but only a small raise of around 10% for each successive
experiment. Table V also shows a similar pattern with an
increase in bit rate of 1000 k from experiment one to two
while maintaining approximately the same bit rate of 3200 k
for subsequent experiments.

This pattern indicates that the Raspberry Pi 3B approached
near maximum effective throughput at around two agents
continuously sending messages while simultaneously running
Wireshark and the top command. Therefore, the maximum
effective throughput can be estimated to be around 1 MB
with around 450 protocol executions per second. In addition,
under heavy load, the protocol consumes around 1.5W and
uses around 100KB of memory. Finally, when analyzing the
bitrate listed within Table V in comparison with the effective
throughput from Table III, we can see that around a third of
the actual bits transferred come directly from our protocol.
The other two-thirds of bits are added on as headers by the
lower level protocols.

B. Multi Node

Our multi node protocol was evaluated through six differ-
ent experiments with varying WSN architectures. Figure 4
graphically depicts these designs. Experiments one through
three only consist of the base station and direct connections
to sensor nodes. Experiments four through six observe the
impact of a cluster head on the network’s performance. For
all experiments, we set message transmission to consist of
forty percent encrypted messages and sixty percent message
with computed HMAC.

According to Table VI, the effective throughput and execu-
tion rate between experiments one to three increase linearly at
around 100,000 b/s and 100 executions per second. Similarly,
we can see that experiment four has rates almost equal to
experiment two. However, experiments five and six have
slightly slower effective throughput (50,000 bps less) and
execution rates (40 executions per second less) despite having
the same number of nodes within the network. This indicates
that WSNs using our protocol should favor bushy forests rather
than deep, tree-like, architectures to achieve higher message
rate.

When viewing Table VII, we can see statistics for individual
nodes within an experiment. Each row corresponds a specific
node in the architecture. The active node for the row is
indicated by an m to its right. For example, in experiment
two, bm 12 indicates the row corresponds to the base station,
whereas b 1m2 indicates the row corresponding to the left
sensor node as seen in Figure 4. Interestingly, throughout all
experiments we see a consistent memory usage of around
9000KB. In addition, for experiments one through three we see

that the base station’s CPU Load increases steadily at around
ten to fifteen percent per added sensor node. Like Table VI, we
also see that experiment four has similar energy consumption
to experiment two. However, we also see that experiment six
matches four and two in energy consumption. Experiment
five has very low energy consumption for all nodes in the
network and is on par with experiment one. Therefore, we see
an inverse relation that suggests deep, tree-like, architectures
favor a lower energy consumption over bushy forests for this
protocol.

Once again, we see a similar pattern in the performance
metrics of Table VIII. Experiments one through three increase
in bit rate at a steady pace of around 300 bps. In addition,
experiment four has a similar bit rate to experiment two and
experiments five and six are comparable to experiment three in
performance. However, although similar, four, five, and six are
all around 100K bps slower than their counterparts. This once
again supports our earlier theory that a bushier architecture
will increase network traffic. When comparing Table VIII to
Table VI, we once again see that one-third of the transferred
bits come directly from our protocol, while the other two-thirds
are added on by lower level protocols.

IV. RELATED WORK

An overview of symmetric authentication protocols within
wireless sensor networks (WSNs) is given within [9], high-
lighting the effectiveness of each technique as well as their
corresponding pitfalls. These protocols exemplify the various
functionality of one-way keychains within WSNs which we
expand upon within our multi node protocol.

Timed Efficient Stream Loss-Tolerant Authentication
(TESLA) is identified by [9] as one of the first symmetric
broadcast authentication protocol, basing itself on the use of a
symmetric MAC within a message and the delayed broadcast
of a secret key. This secret key is constructed using a one-way
keychain, allowing nodes to easily verify that the broadcasted
key and message were authentic. Messages are buffered at the
receiver until the delayed broadcast of the secret key. TESLA
makes use of digital signatures to initially bootstrap a node
to the network, which can prove to be too computationally
intensive for nodes within a WSN.

[9] also introduces an expansion upon TESLA in which
messages can be immediately authenticated by buffering pack-
ets at the sender rather than the receiver. Therefore, the hash
value of a message can be verified ahead of time by a receiver
allowing the instant authentication of the message.

Multiple-TESLA, which is also introduced by [9], instan-
tiates multiple one-way keychains at the base station. These
messages are broadcasted at different time intervals, allowing
for the support of several receivers at varying distances.

The µTESLA protocol was developed to enable broadcast
communication within resource constrained WSNs [9], [16].
To do this, µTESLA unicasts initial key commitments rather
than authenticating initial packets with digital signatures,
reducing overhead in terms of both memory and processing
requirements [16].
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Multi-level µTESLA improves upon the scalability of
µTESLA by having multiple levels of keychains where higher
keychains validate lower-level keychains and the lowest-level
serves to authenticate broadcasted messages [9], [11]. High-
level keychains also represent longer time-intervals than the
lower keychains, reducing memory requirements of storing
keychains whilst maintaining the quick release of low-level
keychains [11]. DoS attacks are also combatted by the peri-
odic and random retransmission of commitment distribution
messages [11]. In effect, a more secure and efficient µTESLA
is created to allow for expansion into larger networks.

Scalable µTESLA introduces the use of a Merkle hash
tree to distribute initial parameters, effectively increasing the
number of transmitters within a network and providing immu-
nity to DoS attacks along with immediate authentication [9].
All transmitters within the network regularly broadcasts its
initialization parameters [9].

[13] proposes a similar protocol, X-µTESLA, which uses
a bloom filter to aggregate commitment keys during a time
interval and expedite the authentication of messages within
receiving nodes. Although the use of a bloom filter can lead
to false positives, it also increases detection rates of forged
packets and lowers memory and processing requirements [13].

Regular Predictable TESLA (RPT) allows for the immediate
and regular authorization of messages. However, to do this,
RPT sends the generated MAC in advance, requiring the
message to be known before its needed transmission [9].

Batch-Based Broadcast Authentication (BABRA) makes
use of independent keys to broadcast batches of messages
within a time interval [9]. Due to the independence of keys,
the advantages of no time-synchronization requirements and
infinite key generation are present, however, packet loss cannot
be handled if the lost packet contains an authentication key [9].
Like BABRA, the unbounded one-way chain method was also
developed to overcome limitations in the set length of one-way
key chains. However, this technique still has the drawback
of time-synchronization evident in TESLA [9]. Long-duration
TESLA also aims to overcome the bounded nature of one-
way key chains by proposing a hierarchical key chain, like
that which is used in multi-level µTESLA, that can be infinite
in length [9].

TESLA++ expands upon the original TESLA protocol by
initially sending a computed MAC along with an index number
during the transmission phase, buffering it at the receiver, then
sending the message and key together during the validation
phase [9], [17]. This technique reduces the memory overhead
within receivers as the buffering of MACs is a much smaller
load than entire messages [17].

DoS Resilient TESLA combines ideas from TESLA++ and
multi-level µTESLA to address computational and memory-
based DoS attacks [9], [17]. A sender will first send its
computed MAC and then send then send the corresponding key
after the transmission period. In addition, the key is generated
using a two-level key chain when the higher level validates
the lower and the lower validates broadcasted messages [17].

Localized Tesla (L-TESLA) is identified within [9] as useful

for authenticated broadcast transmission in larger networks. L-
TESLA is implemented by constructing a distributed network
based on hierarchical (trusted) nodes. These trusted nodes
broadcast and rebroadcast to nodes within their subset of the
network [9].

Extendable Tesla (X-TESLA) uses two-level key chains
with different time intervals which cross authenticate one
another. X-TESLA also provides for commitment hopping
for networks with infrequent messaging saving energy within
resource constrained devices [9].

[10] proposes a broadcasting technique that uses a one-way
key chain in combination with a hierarchical ring structure to
promote responsiveness after detection of malicious or downed
nodes. The protocol described in [10] organizes all users
within a network into a list. This list divides the users into
intervals where revoked users mark the end of an interval.
Users within each interval are then assigned a corresponding
key in which only non-revoked users can use to decrypt the
session key [10].

MultiMAC uses multiple MACs within a single message to
reduce the number of required keys [9]. Each node is initial-
ized with a key ring and a receiver verifies the authenticity of
a message by checking the validity of each MAC generated
by the individual keys on its ring [9].

[12] incorporates ideas from both µTESLA and LEAP++
to generate an E-LEAP++ protocol which reduces the au-
thentication delay for messages and increases responsiveness
to detected malicious nodes. E-LEAP++ calculates delays
throughout the network and releases the commitment key
earlier during the packet transfer process reducing delay
between authenticating packets and reducing the threat of DoS
attacks [12]. Additionally, if a malicious node is detected, a
revocation mechanism is employed in which the base station,
or cluster head, broadcasts a packet to all nodes in the network
with instructions to stop processing packets from the detected
node [12]. In E-LEAP++, nodes are only accepted into the
network during the initial discovery phase to further prevent
effects of malicious nodes.

Broadcast Authentication using Cryptographic Puzzles
(BAP) achieves immediate authentication by disclosing sym-
metric keys within a cryptographic puzzle prior to broadcasting
a message [9]. The MAC and message are then sent at a later
period where the receiver can immediately verify the authen-
ticity of the message on arrival. However, the verification of
authenticity within BAP is dependent on the receiver’s ability
to receive and solve the cryptographic puzzle prior to receiving
the message and its computed MAC [9].

[20] exploits the heterogenous nature of WSNs through a
Multiple-Tier Remote Attestation (MTRA) protocol to verify
the legitimacy of nodes within a WSN. MTRA assumes that
the base station, along with cluster heads, are TPM-enabled
devices that can manage their non-TPM-enabled one-hop
neighbors. The MTRA base station legitimizes TPM-enables
devices within the network through a hardware attestation
procedure in which a random region of flash memory is hashed
using a key generated from a one-way key chain [20]. Non-
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TPM-enabled devices are legitimized by their TPM-enabled
cluster head in the same way except a nonce is used in
replacement of a TPM [20].

V. FUTURE WORK

Due to time constraints, we were unable to develop a
machine learning algorithm that could effectively identify ac-
ceptable sets of permissions for software based on categorical
analysis of an application. Therefore, to fully access the fine-
tuned access control functionality of our single node protocol,
a robust and efficient access authorization granting scheme
should be developed.

In addition, the multi node protocol was tested on a rela-
tively small scale despite being designed for large, distributed,
WSNs. Therefore, large-scale experimentation for this protocol
should be conducted to get a full picture of its performance.
Experimentation should be further conducted on the effects of
bushy vs. deep architectures on network performance when
using the multi node protocol.

Finally, current speculation on revocation mechanisms for
the multi node architecture are to revoke the highest-level
node within a subtree that was detected to be malicious.
However, this would eliminate the entire subtree under the
malicious node and require a technician to correct the affected
nodes. Therefore, an area of interest is in the methods of
detection for a malicious node within the network and the
revocation mechanisms that are employed. The aims of these
detection and revocation methods are to reduce the impact on
the network and the affected subtree.

VI. CONCLUSION

The internet of things is a rapidly expanding field
consisting of low-powered and memory-constrained devices.
Due to this, IoT devices often sacrifice security in favor of
functionality. We propose two separate protocols that aim to
harden the security of these IoT devices while maintaining
effective communication and function of the device. These
methods both employ symmetric keys in combination with
AES encryption and SHA256 HMAC generation to ensure
confidentiality and authenticity. Our first protocol takes a
user-level approach on the internal security between a device
and its installed software. This single node protocol allows
for fine-tune access control for advanced operations required
by software. Our second protocol allows for WSN designers
to adapt their networks and selectively tradeoff between
memory use and power consumption in a sensor network.
In addition, this protocol allows for efficient, low-cost, and
dynamic bootstrapping of nodes into an established symmetric
network.
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