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Abstract—Nowadays, The Internet of Things (IoT) has been
widely used in various fields due to its smart sensing and commu-
nication capabilities. IoT devices serve as bridges for the cyber
system to interact with the physical environment by providing
various useful sensing capabilities such as battlefield surveillance,
home monitoring, traffic control, etc. These capabilities also
make IoT an important role in tactical missions in the military,
including Reconnaissance, Intelligence, Surveillance, and Target
Acquisition (RISTA). Nevertheless, IoT devices are known to have
critical issues on security due to constraints on cost and resources.
Most existing researches are based on smart sensors that have
comparatively more computing and communication resources,
while security solutions for dumb sensors are still lacking. Some
IoT sensors that are deployed in a hostile environment are dumb
due to limitations on cost and power supply, making them more
vulnerable to attacks. In this work, we try to tackle this problem
by proposing effective authentication solutions between a UAV
and dumb IoT devices (also referred to as dumb sensors) within
an example application of a UAV-sensor collaborative RISTA
mission. We present two different schemes for two-way mutual
authentication between the UAV and dumb sensors which utilize
non-cryptographic physical layer cover channel and neighboring
devices’ signal sensing correlations respectively. We demonstrate
the feasibility and effectiveness of our schemes with extensive
real-world experiments on our prototype deployment.

Index Terms—IoT, Authentication, UAV

I. INTRODUCTION

As the trend of Internet of Things (IoT) continues to
thrive, embedded smart devices with network connections are
pervasively used in many fields. With these low-cost IoT
devices being deployed at a large scale, a lot of human work
can be replaced by smart devices. Especially for work in a
hostile environment, using IoT not only avoid risks on human’s
life, but also achieves higher efficiency.

IoT devices can be roughly categorized into two classes:
1) smart IoT devices that have comparatively higher computa-
tional and communication capabilities, such as smart speakers,
smart TVs, and smart doorbells; 2) dumb IoT devices that have
very limited computational and communication resources due
to constraints on cost, energy consumption, and/or device size.
An example of dumb devices are light sensors and contact
sensors with Zigbee [1] or ZWave wireless connections.

As a typical use case of dumb IoT devices in the battlefield
and tactical environment, we consider the unmanned aerial
vehicles (UAVs) centric battlefield surveillance system as the
study case. In this case, UAVs are used to collect data from
a large number of dumb sensors which are deployed on
hostile territory for the mission of reconnaissance and target

acquisition. The dumb sensors run on sensing mode by caching
all collected data in its memory while keeping radio silent until
activated by certain beacon messages broadcast by flying over
UAVs. After that, dumb sensors exchange data with the UAV
through wireless connections to export cached data and get
reconfigured.
As a matter of fact, these dumb sensors face a lot of

security threats because they are deployed in the battlefield
or hostile territory that are physically accessible by adver-
saries. As the connection between the UAV and dumb sensor
is intermittent, secure mutual authentication before the data
exchange is critical to prevent spoofing and impersonating
attacks. However, traditional crypto-based authentication so-
lutions usually involve with high computing overhead that
makes it unsuitable for dumb devices [2]. In addition, the
large number of dumb devices impose significant difficulties
on secure key management.
Several papers (e.g., [3]–[8]) have studied related IoT secu-

rity and wireless issues. In this paper, we propose a practical
non-crypto authentication scheme for UAVs and dumb sensors,
which can satisfy both the requirements of high reliability and
low overhead. In our work, we utilize the physical covert
channel and the neighbor nodes of dumb sensors. For the
authentication of the UAV, we revise the µTESLA protocol [9]
to get part of the secret sent via the physical covert channel,
which achieves enhanced security. For the authentication of
dumb sensors, a dumb sensor’s signal strength pattern is
measured by multiple nearby devices and is used as the unique
feature of its location. We evaluate our proposed authentication
schemes regarding the effectiveness and overhead by a pro-
totype implementation in real IoT devices. The results show
that our schemes achieve satisfying security with very small
overhead.
Our contributions are summarized as follows:
• We enhance the µTESLA protocol by adding the physical

covert channel for a secure and low-overhead one-to-
many authentication, which suits the need of the authen-
tication of UAVs.

• We propose a novel signal strength pattern matching
method to authenticate dumb sensors by taking advantage
of smart devices that distribute close by.

• We evaluate our proposed schemes based on real-world
experiments with prototype implementation.

The rest of the paper is organized as follows. In Section
II, a brief literature review of related works on the physical
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covert channel, neighboring proximity-based authentication,
and µTESLA is given. In Section III, system models, threat
models, and assumptions are discussed. In Section IV, we
introduce the design of our schemes. In Section V, we present
our prototype system that is used to emulate the considered
use scenario and the evaluation results of the authentication
schemes. In Section VI we conclude the paper.

II. RELATED WORKS

One of our authentication schemes utilizes covert channel
to send secret information. The other scheme is a neighboring-
based device authentication scheme. In this section, we review
the works in these two research areas. At the end, we discuss
a protocol call µTESLA.

A. Using Covert Channel for Authentication

A covert channel is defined as one kind of channel that is
not intended for information transfer at all. However, it can
be any entity which can be utilized by a process to transfer
information. Actually, covert channels raise challenges in in-
formation security [10]. To effectively detect covert channels,
they should be exploited as often as possible. Many covert
channels have been proposed. Most covert channels can be
classified into two categories: storage covert channels [11]
and timing covert channels [12]. A storage covert channel
transfers information through the settings of bits by one
program and the reading of these bits by another. A timing
covert channel conveys information through the arrival pattern
of packets. Some recently proposed covert channels have
explored other aspects of communications, such as power [13],
sound [14] and operating systems [15].

B. Neighboring-based Device Authentication

When a device has quite limited capabilities like dumb sen-
sors, we may use other more powerful devices to help authen-
ticate the dumb device. An in-band proximity authentication
scheme using radio signal strength (RSS) level is proposed
in [16], and this scheme utilizes radio wave transmission:
RSS variations of transmitters that are in close proximity are
highly correlated, whereas they are randomly diverse when two
transmitters are slightly separated. We also utilize this fact in
our authentication scheme. Another work [17] also exploits
RSS to classify devices, but simplifies the process by limiting
the scenario to body area networks.

Next, we describe a protocol called µTESLA, which is
designed for authenticating broadcasts in wireless sensor net-
works. In µTESLA, a key chain is generated using a one-
way function (e.g., SHA), and all receiver nodes loosely
synchronize with the sender nodes. The sender broadcasts a
message with a MAC to all nodes, where MAC is generated
by the current key. The receivers buffer the received message
and the MAC. Then after some delay, the sender node sends
the key to all nodes. The receiving nodes can easily verify the
key using the one-way function, and if valid, the MAC is also
verified.

The difference between our work and µTESLA is given
below:

• We simplify µTESLA by removing the MAC, and the
key is directly delivered to all receiving nodes.

• Each key is split into two parts. We send two parts of the
key via the normal and covert channel. Because part of
the key is sent via the covert channel, the security of the
scheme is enhanced.

III. MODELS AND ASSUMPTIONS

A. System Model

In this paper, we consider the scenario of bi-directional
communications between UAVs and dumb sensors in the mis-
sions of reconnaissance, intelligence, surveillance, and target
acquisitions (RISTA). In the scenario, three different types of
devices are considered:
1) Dumb sensors: Small, low-cost IoT devices deployed

in large scale in the battlefield or hostile territory. They
have simple sensing and communication capabilities to
sense the environment and exchange data with the UAV
flying over. Their computational capability is too limited
to perform any kind of encryption or other cryptographic
operations.

2) Smart Devices: IoT devices deployed along with the
dumb devices in the same area. They have comparatively
small quantities but stronger computational capability
to perform common cryptographic operations (such as
encryption) for secure communications with the UAV.

3) UAV: The UAV functions like a coordinating base station
and it is used to collect data from dumb sensors de-
ployed on the ground. It flies over the deployed sensors
intermittently to collect sensing data.

During the operation, two-way authentications are con-
ducted. First, the flying UAV broadcasts an activation message
along with a secret key (partially via a covert channel) to
wake up dumb sensors from the sensing mode. Dumb sensors
receive the message and they verify the secret key. If the
key is valid, they accept the activation message and switch to
transmission mode to exchange data with the UAV. Otherwise,
they discard the message and go back the sensing mode.
Second, the UAV also maintains secure connections with the
smart devices. The UAV asks all smart devices to observe
the signal strength of nearby dumb devices and report the
results back to the UAV. Then, a dumb sensor’s authenticity
is determined by comparing the signal strength data with the
ground truth collected during the device deployment.

B. Threat Model & Assumptions

The use of RISTA usually requires the dumb sensors to be
deployed in a battlefield or a hostile territory. Adversaries may
launch cyber attacks to thwart the normal functioning of the
IoT network. Here, we consider two categories of attacks:

a) UAV Impersonation: An adversary may fly her own
UAV, which impersonates the good UAV and tries to commu-
nicate with the dumb sensors, and then the adversary’s UAV
can launch various attacks.
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b) Dumb Sensor Impersonation: An adversary may place
her own sensors in the same field, which pretend to be benign
dumb sensors and report false sensory data to the UAV. This
would cause inaccurate or incorrect battlefield analysis.

To achieve these attacks, adversaries need to break the
authentication procedure between the UAV and dumb sensors.
We assume a common adversary with the following capabili-
ties:

• The adversary can eavesdrop on communication between
the UAV and dumb sensors since no cryptographic en-
cryption is used.

• The adversary can use counterfeit UAV or dumb sensors
to send arbitrary content via the wireless link.

• The adversary can store, analyze, and replay the history
communication content between the UAV and dumb
sensors.

Also, we make some reasonable assumptions about the
limitations of the adversaries’ capabilities:

• The adversary cannot break one-way secure hash func-
tions such as SHA-1 and SHA-256.

• The adversary cannot sniff the content sent through the
physical covert channel.

• The adversary cannot obtain the exact location of each
dumb sensor.

IV. SYSTEM DESIGN

In this section, we present our non-crypto mutual authenti-
cation mechanism between the UAV and dumb sensors. Our
mechanism includes different authentication methods. For the
broadcast authentication of the UAV, we adapt the µTESLA
protocol where we have part of the secret key sent through
the physical covert channel to achieve enhanced security. For
the authentication of dumb sensors, we propose smart device-
assisted proximity-based authentication to differentiate benign
sensors from fake sensors deployed by the adversary. Both two
authentication methods utilize the covert channel encoded by
some wireless physical layer parameters.

A. Physical Layer Parameters

a) Received Signal Strength Indication: In wireless com-
munications, the received signal strength indication (RSSI) is
the signal strength that a receiver detects, with a unit of dBm.
The RSSI is mainly affected by the signal source’s transmis-
sion power and signal channel characteristics such as distance,
channel medium, multipath effect, and shadowing. During the
very short dumb sensor activation broadcast time slot, we can
reasonably assume channel characteristics remain constant,
which means the RSSI would be significantly correlated to
the transmission power. As a result, the sender can utilize the
RSSI as a communication channel by encoding bits stream
into the sequence of transmission power changes.

b) Packet Interval: In our use scenario, an UAV sends
packets to dumb sensors. After the dumb sensors receive the
first packet from the UAV, they keep recording the follow-
ing packets and measuring each time interval between two
consecutive packets. The time difference between any two

consecutive packets is defined as the packet interval. With
a pre-shared threshold, each interval can be decoded as a
bit ’1’ or ’0’. From the sender side, packets are sent with
intentionally added delay to encode secret binary streams in
the form of packet interval variations. In our scheme, the
intervals longer than the threshold are decoded as 1 while
shorter ones are decoded as 0. According to our study and
prototype implementation, packet intervals can be detected by
dumb sensors without adding any special external devices.
What’s more, one cannot discover the covert channel easily
without knowing the pre-defined threshold.

B. UAV-to-sensor Authentication

For the case of using dumb sensors to authenticate the
UAV, one-to-one authentication is not effective considering the
large quantity of dumb sensors and the short communication
time window. Here we adopt the µTESLA protocol [9],
which utilizes the aforementioned packet interval based covert
channel to send part of the secret key.

Fig. 1. Each time send and receive two part of keys. Assemble into an entire
key to obtain the previous key by applying hash function, and compare the
second part of computing result with stored second part of the key.

We first use the secure hash function (SHA-128) to generate
a chain of hash values: K0, K1, K2, K3, and so on. This
key chain is used in reverse order. We split each key Ki into
two parts: K1

i and K2
i . Before dumb sensors are deployed,

the second part of K0 (K2
0 ) and the first part of K1 (K1

1 )
should be pre-stored in dumb sensors. Let’s take the very first
authentication as an example. UAV sends K2

1 through normal
channel andK1

2 through covert channel to dumb sensors. Once
dumb sensors receive K2

1 , they assemble the K2
1 with pre-

stored K1
1 to get K1, and apply the same one-way function

to obtain K0 (Fig. 1). Then they compare the pre-stored K2
0

with the second part of the computing result K0. If it is valid,
that means UAV can be trusted and dumb sensors will make
an attempt to retrieve K1

2 from the covert channel, then dumb
sensors discard storedK2

0 andK1
1 and store the newly received

parts of the keys K2
1 and K1

2 , which will be used for the next
authentication. If invalid, dumb sensors will not perform the
above and just discard received messages while keeping the
stored data unchanged. Theoretically, the more bits that are
sent using the covert channel, the more secure the scheme
is. However, we also need to consider the overhead because
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we are using the covert channel. Thus, we need to figure
out how many bits of the key sent using the covert channel
are reasonable while not increasing too much overhead. We
discuss this trade-off in the experiment part.

C. Sensors-to-UAV Authentication
The other authentication scheme we proposed is to authen-

ticating dumb sensors using neighboring smart devices. Smart
devices can detect the signal strengths of dumb sensors and use
these to determine whether the sensor is in the place it should
be [18]. This approach can detect a impersonating sensor that
is close to a legitimate dumb sensor, which is demonstrated
by our experiments.

The RISTA field typically has both smart devices and
dumb sensors deployed. Smart devices have more computing
and communication resources to deploy crypto-based mutual
authentication with the UAV and maintain secure communica-
tions with it. In our method, these smart devices are utilized as
assisting observers to measure the transmission signal strength
of nearby dumb devices.

We use RSSIs measured by neighboring smart devices as
patterns (rssi 1, textitrssi 2, rssi 3, rssi 4, ...) to represent the
identity of a dumb sensor. First of all, the pattern of each dumb
sensor’s correct position is pre-stored in the UAV as the ground
truth, e.g., during the dubm sensor deployment. When a dumb
sensor sends wireless signals and tries to connect to the UAV,
the smart devices around it observe RSSIs of the dumb sensor.
They then send the values to the UAV, which show a pattern
of the dumb sensor’s current position. The UAV may compute
the Pearson Correlation Coefficient (Equation 1) of the pre-
stored pattern and the current pattern, and then decide if this
is a legitimate sensor.

ρX,Y =
cov(X,Y )

σXσY

where X and Y are random variables, cov is the covariance,
and σ is the standard deviation.

Here, we need to set a threshold of the correlation coeffi-
cient; if the correlation coefficient is larger than the threshold,
it is considered as the legitimate dumb sensor. Otherwise, the
sensor is not accepted. In the experiment part, we evaluate the
performance of this scheme and discuss the range in which it
can be considered as the correct position.

V. PROTOTYPE IMPLEMENTATION & EVALUATION

A. Prototype System Setup
a) Authentication Using Covert Channel: We emulated

the use scenario by building a prototype system consisting
of two Raspberry Pi 3 Model B Boards. One of them was
configured to a WiFi (802.11b) access point, named Pi UAV
to emulate the UAV; the other one was normally configured to
emulate the dumb sensor, named Pi dumb. The access point
functionality can be realized by using the hostapd tool with
dnsmasq. Dnsmasq is an easy-to-configure DNS forwarder,
designed to provide DNS services to a small-scale network. It
can serve the names of local machines which are not in the
global DNS.

Fig. 2. Pi smarts (corner) and Pi dumb (center)

b) Authentication Based on Neighboring Devices: Here
we use six Raspberry Pi 3 Model B Boards to emulate
the use scenario. Two of them were named Pi UAV and
Pi dumb as mentioned before. The other four were configured
in monitor mode, named Pi smart1, Pi smart2, Pi smart3,
and Pi smart4. Pi dumb and four Pi smarts are shown in Fig.
2. Aircrack-ng is used to monitor the Pi dumb. We run sudo
iwconfig wlan1 mode monitor command in terminal on four
Pi smarts to activate monitor mode and run sudo airodump-ng
wlan1 to observe the signal strength of Pi dumb.

B. Packets Interval Based Covert Channel

In our experiment, we take an interval time delay of two
packets as the covert channel. Before modifying the delay, it
is necessary to figure out the normal interval time of sending
packets. To obtain this, we create a Python script in Pi UAV
to send 2,000 packets and another Python script in Pi dumb
to receive these packets to get a normal interval time. We set
a threshold to see the distribution of the interval times. The
results are shown in Fig. 3.
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Fig. 3. For normal continuous communication, more than 98% of packets
have inter-packet intervals shorter than 0.004s, indicating the interval threshold
of 0.004s is enough to prevent bit error of the physical covert channel.

Success rate means the proportion of time below the thresh-
old. Since most of intervals are larger than 0.003s, a 0.003s
delay can be used to represent 0 digits. And since we want
to send packets as quickly as possible, we can use a 0.005s
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delay as 1 digit and make the threshold 0.004s to distinguish
between these two delays.

However, on Raspberry Pi 3, timing loops in software
are generally not that useful because the program can be
preemptively interrupted by Linux doing something else. That
means when using time.sleep() to set up the delay, it may not
“sleep” precisely the time we want. To reduce this error in
the experiment, we emulated by using 10-times delay, that is,
0.03s and 0.05s with a threshold of 0.04s.

Once Pi dumb is connected to the access point Pi UAV,
Pi UAV can send packets to Pi dumb. Assume that UAV
has m data packets to send to the dumb sensor after valid
authentication by sending the second part of key through
normal channel, and we want to make use of the interval of
two data packets as the covert channel to send the first part
of the key (hidden key). Let n be the number of bits of the
hidden key using the covert channel, and if it is no more than
m, the intervals of m data packets are sufficient to send hidden
key; otherwise, UAV needs to send extra packets to satisfy
the usage of the hidden key. Here, we compute the growth
rate of overhead in the cover channel due to modifying delay.
Each time, the number of data packets is fixed (Fig. 5). From
this figure, it suggests that we can make the number of bits
of hidden key no more than the data packet number needed
to send without suffering too much extra overhead. Also the
results of Pi dumb in one specific authentication are shown in
Fig. 4.

Fig. 4. The picture above is the result when receiving the correct second part
key; The picture below is when the received second part key is incorrect.
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Fig. 5. When the number of bits exceeds the number of data packets, overhead
increases faster. The fewer data packets to send, the more significant the
growth rate of overhead when extra packets need to be sent.

C. Correlation Coefficient of Different Positions

In the use scenario, we assume each dumb sensor has more
than four smart devices around it, which can be used to help
UAV verify the dumb sensor. With this assumption, we do not
need to emulate the scenario in which dumb sensor is on the
margin or outside of the square. We placed four Pi smarts in
a square with an edge length of one meter and put Pi dumb
as the center of the square (Fig. 6). Firstly, each Pi smart
collected 5 signal strengths of Pi dumb and computed the
mean values to generate the pattern of the right position (center
of the square) and stored it in the Pi UAV. The pattern was
stored as a list: (rssi 1, rssi 2, rssi r3, rssi 4). The mean
received signal strengths were generated by relative Pi smart.

Fig. 6. There are total of ten positions between two red triangles shown in
the figure to emulate malicious sensors. Every two positions has a distance
of 0.1 meters.

Fig. 7. The picture above is the signal strength of the benign dumb sensor
measured four neighboring smart devices. The correlation coefficient between
the measured pattern and the ground truth pattern is higher than 99% to
indicate the device’s genuineness. In contrast, the result of a fake sensor which
is shown in the picture below presents a correlation coefficient far lower than
the first one.

Then, we change the position of Pi dumb to emulate a
malicious sensor (Fig. 6). The first position is 0.1 meters
away from the center, the second position is 0.2 meters away
from the center, and so on. At each position, we run the
sudo airodump-ng wlan1 command in the terminal on four
Pi smarts to observe the signal strength of the malicious
sensor. After they have RSSIs, they send them to Pi UAV to
generate the pattern of the specific position. Pi UAV computes
the Pearson Correlation Coefficient of these two patterns.
Some of the outputs on Pi UAV are shown in Fig. 7. Fig.
8 shows the curves of different patterns, which makes it more
intuitive to see the trend of the pattern as it changes with
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position. The relationship between distance and the correlation
coefficient is shown in Fig. 9. Since we set 0.95 as the
threshold of the correlation coefficient, a little move of the
sensor can be detected. Maybe only within 0.05 meters, it can
be considered as in the right position. Due to the fluctuation
of the RSSI, this result is acceptable.
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Fig. 8. As distance increases, the curve gradually deviates from the reference.
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Fig. 9. Relation between the fake-to-benign distance and the signal strength
pattern correlation coefficient. The measured coefficient drops drastically
when the distance gets larger. Even 0.1 meters distance results the correlation
coefficient of 0.8928, which is below the threshold of 0.95.

In our use scenario, the distance between devices may
be much larger, but military standard devices may be used.
The power and antenna sensitivity of military-grade devices
should be remarkably higher than Raspberry Pi. Thus, it is
reasonable to emulate the use scenario in such a small area
using Raspberry Pi.

VI. CONCLUSIONS

In this paper, we proposed novel mutual authentication
schemes for an UAV and dumb sensors without using crypto.
The schemes can detect impersonation attacks in IoT use
scenarios of air-ground collaborating with RISTA operations
using UAVs and mission-specific (dumb) sensors. Our au-
thentication schemes include the physical layer covert channel
based scheme and the neighboring device based scheme. Using
a covert channel enhances the security of the authentica-
tion procedure and only slightly increases the overhead. A
neighboring-based authentication scheme can accurately iden-
tify sensors at different locations. We built prototype systems
using real IoT devices, demonstrating that our schemes are
feasible and effective.
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